Категории
Самые читаемые

Суперсила - Пол Девис

Читать онлайн Суперсила - Пол Девис

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 26 27 28 29 30 31 32 33 34 ... 74
Перейти на страницу:

Самой большой из машин ЦЕРНа в то время был протон-антипротонный ускоритель на встречных пучках, коллайдер, – кольцеобразная камера длиной в несколько километров, внутри которой циркулировали навстречу друг другу протоны и антипротоны. Пучки частиц, ускоренных до нужной энергии, направляли так, чтобы произошло лобовое столкновение. Происходила аннигиляция протонов и антипротонов, а из освобождавшейся при этом энергии рождались потоки новых частиц, разлетающихся во все стороны от точки столкновения Для обнаружения следов частиц обычно используются специальные электронные устройства, которые срабатывают при прохождении через них электрически заряженных тел. С помощью системы таких устройств экспериментатору удается восстанавливать трехмерную картину столкновения. Протоны и антипротоны поступают в ускоритель из периферийных устройств, одно из которых предназначено для получения антипротонов и хранения их в магнитном накопительном кольце перед инжекцией в коллайдер. Возглавлял работу итальянский физик Карло Руббиа. Осенью 1982 г. Руббиа был героем дня.

Хотя коллайдер только выходил на расчетный режим, нетерпеливые физики увлеченно пытались предугадать, с какими процессами им придется иметь дело при столкновениях частиц в неисследованном пока диапазоне энергий. Но вступая на территорию, которой еще не было на карте, группа из ЦЕРНа все же имела путеводную нить – теорию, и в ней заметно выделялся один ранее намеченный ориентир Если вычисления были правильны, то физикам со дня на день предстояло впервые увидеть частицу нового типа – так называемую W-частицу, переносчика слабого взаимодействия. Предсказанная пару десятилетий назад, W-частица еще никем не наблюдалась. Подтверждение ее существования означало бы первый шаг на пути к суперсиле.

В декабре 1982 г. у экспериментаторов рассеялись последние сомнения. По всему миру ползли слухи. Но только в середине января 1983 г. Руббиа пригласил прессу и объявил об открытии W-частицы.

В сущности, цель науки – это поиск единства. Научный метод обязан своими значительными успехами способности ученых связывать разрозненные фрагменты знания в единую картину. Отыскивать связующее звено – одна из главных задач научного исследования. Выявление Ньютоном связи между гравитацией и движением планет ознаменовало собой рождение научной эры. Выявление связи между болезнетворными микробами и заболеваниями положило начало современной медицине как истинной науке. Установление связи термодинамических свойств газа с хаотическим движением молекул поставило на прочную основу атомную теорию вещества. Обнаружение связи между массой и энергией проложило путь к ядерной энергии.

Всякий раз, когда ученым удается установить новые связи, расширяется понимание окружающего мира и возрастает наша власть над ним. Новые связи не просто объединяли наши познания – они указывали путь к ранее не известным явлениям. Связи – это одновременно и синтез знания, и стимул, направляющий научные исследования по новым, непроторенным дорогам.

Фундаментальная физика всегда прокладывала путь к единству знания. Но все происходившее в физике с начала 70-х годов не сравнимо ни с чем. По-видимому, мы стоим на пороге более могущественного и глубокого объединения, чем когда-либо ранее. Среди физиков растет убеждение, что начинают вырисовываться контуры не более и не менее как единой теории всего сущего.

Подобные теории отнюдь не новость. Большинство религий претендуют на описание естественного и потустороннего миров в их космическом единстве. Но религиозные космологии уходят корнями в древнюю мудрость, божественное откровение и теологические хитросплетения. Среди них нет и двух одинаковых.

Научные теории такого сорта редки, хотя и встречаются. Английский астроном Артур Эддингтон, например, пытался построить всеобъемлющее описание материи, силы и возникновения Вселенной в книге “Фундаментальная теория”, опубликованной в 1946 г. Но претенциозные идеи Эддингтона были во многом лишь мечтой одинокого и, возможно, несколько эксцентричного ученого. Ныне же впервые научный эксперимент и теория достигли такого уровня, когда стало реальным создание полной теории Вселенной, которая опирается на общепринятые и допускающие проверку гипотезы.

Главный толчок столь существенному продвижению был дан исследованиями фундаментальных взаимодействий в природе. В гл. 5 мы рассказали, что физики различают четыре фундаментальных взаимодействия: гравитационное, электромагнитное, слабое и сильное. Еще в середине прошлого столетия Максвелл создал единую электромагнитную теорию, охватившую как электрические, так и магнитные явления. Затем в 20-х годах нашего века Эйнштейн предпринимал систематические попытки объединить электромагнетизм с его теорией гравитации (общей теорией относительности).

Но вскоре его увлекли другие события. Были открыты ядерные силы – сильное и слабое взаимодействия, и при любой попытке объединить силы природы приходилось считаться уже не с двумя, а с четырьмя фундаментальными взаимодействиями. Однако увлеченность идеей единого описания не прошла. Почему должно быть четыре различных фундаментальных взаимодействия? Перспектива описания всего происходящего в природе на основе одной-единственной суперсилы оставалась привлекательной, но неопределенно далекой мечтой. Ныне осуществление этой мечты – дело отнюдь не отдаленного будущего. Вскоре она вполне может стать реальностью.

Решающий шаг на пути к единой теории был сделан в конце 60-х годов. К тому времени теоретики добились невиданных успехов в применении квантовой теории к полям. Представление о поле возникло столетием раньше, успев доказать свою полезность в широком диапазоне практических приложений, в частности в радиотехнике. Соединение квантовой механики с электромагнитным полем привело непосредственно к квантовой электродинамике (КЭД), обладающей легендарными точностью и предсказательной силой.

Что касается трех остальных взаимодействий, то тут, к сожалению, нельзя было похвастаться аналогичными достижениями. Квантовая теория гравитации, в которой переносчиками гравитационного взаимодействия служат гравитоны, завязла в математических трудностях. Природа слабого взаимодействия по-прежнему оставалась во многом непонятной. По поводу существования Z-частиц не было единого мнения, а описание с помощью обмена только W-частицами давало разумные результаты лишь в случае простейших процессов при низких энергиях. Еще менее понятной казалась природа сильного взаимодействия. К тому времени стало ясно, что все адроны, в частности протоны и нейтроны, вовсе не элементарные частицы, хотя теория кварков еще не имела прочного фундамента. Взаимодействие адронов выглядело очень сложным, но никто не знал, как моделировать внутреннюю структуру адронов, чтобы получить более простое описание.

Таким образом, в 60-е годы каждое из четырех взаимодействий описывалось своей теорией, и из них только одну, а именно КЭД, можно было считать во всех отношениях удовлетворительной. Теоретики стали размышлять, в чем же секрет КЭД. Какими особенностями электромагнитного поля, не свойственными другим силовым полям, обусловлен успех квантового описания? Если бы удалось выявить эти особенности, то теорию других взаимодействий можно было бы так видоизменить, чтобы включить в нее эти решающие факторы.

Оживший вакуум

Пустое пространство кажется не очень перспективным объектом для исследования, однако именно в нем скрыт ключ к полному пониманию существующих в природе взаимодействий. Вакуум довольно легко представить наглядно. Это область пространства, из которой удалено решительно все – частицы, поля, волны. Достичь абсолютного вакуума практически невозможно. Даже в космическом пространстве всегда присутствует остаток газа или плазмы, а также реликтовое фоновое излучение, оставшееся от Большого взрыва. Однако ничто не мешает нам рассматривать идеализированный вакуум.

Когда физики приступили к разработке квантовой теории поля, оказалось, что вакуум совсем не такой, каким его долгое время представляли, – это не пустое безжизненное пространство, лишенное вещества. Оказалось, что квантовая физика способна на “трюки” даже в отсутствие квантовых частиц.

Источник таких “трюков” – принцип неопределенности Гейзенберга, точнее его разновидность, относящаяся к энергии. В гл. 2 мы говорили о том, -что квантовые эффекты могут приостанавливать действие закона сохранения энергии на очень короткое время. В течение этого промежутка времени энергия может быть взята “взаймы” на различные цели, в том числе на рождение частиц. Разумеется, все возникающие при этом частицы будут короткоживущие, так как израсходованная на них энергия должна быть возвращена спустя ничтожную долю секунды. Тем не менее частицы могут возникнуть из ничего, обретя мимолетное бытие, прежде чем снова исчезнуть. И эту скоротечную деятельность невозможно предотвратить. Как бы мы ни старались опустошить пространство, в нем всегда будет присутствовать рой мимолетных частиц, возникновение которых “субсидируется” соотношением Гейзенберга. Эти частицы-призраки нельзя наблюдать, хотя они могут оставить следы своего кратковременного существования. Они представляют собой разновидность “виртуальных” частиц, аналогичных переносчикам взаимодействий, но не предназначенных для получения или передачи сигналов. Возникнув из пустоты, они снова превращаются в нее, являя собой наглядное доказательство существования силового поля и оставаясь при этом бесплотными призраками.

1 ... 26 27 28 29 30 31 32 33 34 ... 74
Перейти на страницу:
На этой странице вы можете бесплатно читать книгу Суперсила - Пол Девис.
Комментарии