Категории
Самые читаемые
onlinekniga.com » Научные и научно-популярные книги » Физика » 3a. Излучение. Волны. Кванты - Ричард Фейнман

3a. Излучение. Волны. Кванты - Ричард Фейнман

Читать онлайн 3a. Излучение. Волны. Кванты - Ричард Фейнман

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 21 22 23 24 25 26 27 28 29 30
Перейти на страницу:

Когда была открыта новая, квантовая, механика, привер­женцы классической теории, т. е. все физики, кроме Гейзенберга, Шредингера и Борна, говорили: «Что же хорошего в ней, в вашей теории, раз она не может ответить на простейшие вопросы: каково точное положение частицы? Через какую щель она проскочит? и другие». Ответ Гейзенберга гласил: «Я не обя­зан отвечать на такие вопросы, ибо вы не можете их задать эк­спериментально». Иначе говоря, отвечать — означало бы делать то, что делать необязательно. Рассмотрим две теории, (А) и (Б). Теория (А) содержит в себе идею, которую нельзя прове­рить непосредственно, но которая используется в анализе; теория (Б) этой идеи не содержит. Если их предсказания рас­ходятся, то нельзя утверждать, что теория (Б) ошибочна на том основании, что она не может объяснить идею из теории (А); ведь эта идея как раз из тех вещей, которые нельзя непосред­ственно проверить.

Ну что ж! Хорошо, конечно, знать, какие из идей экспери­ментальной проверке не поддаются, но нет необходимости от­брасывать их все. Неверно же, что науку можно создавать толь­ко из тех понятий, которые прямо связаны с опытом. Ведь в самой квантовой механике есть и амплитуда волновой функции, и потенциал, и многие другие умственные построения, не под­дающиеся прямому измерению. Основа науки — в ее способ­ности предвидеть. Предвидеть — это значит сообщать, что слу­чится в опыте, который никогда прежде не ставился. Как этого можно добиться? Предполагая, что мы независимо от экспери­мента знаем, что произойдет, мы экстраполируем опыт, выво­дим его в область, в которой он не ставился. Мы расширяем свои представления до пределов, в которых они никогда не проверялись. Если этого не сделано — никакого предсказания нет. Поэтому вполне разумно было когда-то физику-классику в счастливом неведении предполагать, что понятие положения, бесспорно имеющее смысл в футболе, имеет какой-то смысл и для электрона. Это была не глупость. Это была разумная про­цедура. А теперь мы, например, говорим, что закон относитель­ности верен при любых энергиях, а ведь в один прекрасный день явится кто-нибудь и объяснит, насколько мы глупы. Мы не догадаемся, в каком месте мы совершаем «глупость», покуда не «вырастем над собой»; вся проблема сводится к тому, как и когда нам это удастся. Единственный же способ обнаружить, в чем мы ошибаемся, это понять, в чем состоят наши предсказания. Так что без умственных построений не обойтись.

Мы уже делали ряд замечаний о недетерминированности квантовой механики, т. е. о том, что она не способна предсказы­вать, что произойдет в данных физических условиях, как бы аккуратно они ни были на опыте осуществлены. Если атом находится в возбужденном состоянии, собираясь излучить фо­тон, мы не можем сказать, когда это случится; существует ко­нечная амплитуда вероятности испустить фотон в любой момент, и только эту вероятность мы и можем предвидеть. Мы не можем точно предсказывать будущее. На этой основе и высказываются разного рода глупости о неопределенности всех явлений в мире, возникают вопросы о свободе воли частиц и т. д.

Следует, конечно, подчеркнуть, что и классическая физика была в каком-то смысле недетерминированной. Обычно думают, что недетерминированность, невозможность предсказать бу­дущее — это особенность квантовой механики, и именно с ней связывают возникновение представлений о свободе воли и т. д. Но если бы даже наш мир был классическим, т. е. если бы законы механики были классическими, все равно из этого не следует, что те же или какие-то аналогичные представления не возникли бы. Да, конечно, с точки зрения классики, узнав местоположе­ние и скорость всех частиц в мире (или в сосуде с газом), можно точно предсказать, что будет дальше. В этом смысле классичес­кий мир детерминирован. Но представьте теперь, что наша точ­ность ограничена и что мы не знаем точно положение только одного из атомов; знаем, скажем, его с ошибкой в одну миллиар­дную. Тогда если он столкнется с другим атомом, неопреде­ленность в знании его координат после столкновения возрастет. А следующее столкновение еще сильней увеличит ошибку. Так что если сначала ошибка и была еле заметной, то все равно вскоре она вырастет до огромнейшей неопределенности. Вот вам пример: вода, падая с плотины, брызжет во все стороны. Подойдите поближе, и на ваш нос тоже упадет нес­колько брызг. Это кажется совершеннейшей случайностью, хотя поведение воды может быть предсказано на основе чисто классических законов. Точное положение всех капель зависит от мельчайших колебаний потока воды перед плотиной. Но как оно зависит? Еле заметные нерегулярности в падении воды усиливаются и приводят к полной случайности движений. Ясно, что мы не можем по-настоящему предвидеть положение капель, если не знаем движения воды абсолютно точно.

Правильнее будет сказать, что для данной точности (сколь угодно большой, но конечной) можно всегда указать такой боль­шой промежуток времени, что для него становится невозмож­ным сделать предсказания. И этот промежуток (в этом вся соль) не так уж велик. Он не равен миллиону лет при точности в одну миллиардную! Время с уменьшением ошибки растет толь­ко логарифмически, и оказывается, что за очень и очень малое время вся наша информация теряется. Если точность равна даже одной миллиард-миллиард-миллиардной (ставьте сколько угодно миллиардов, но только когда-нибудь остановитесь!), все равно можно указать промежуток времени, меньший чем время, нужное для того, чтобы произвести измерения с такой огромной точностью, после которого уже невозможно будет предугадывать, что случится! Поэтому нечестно говорить, что уже в видимой свободе и недетерминированности человеческого мышления мы видим доказательства невозможности его изуче­ния в рамках классической «детерминистской» физики и приветствовать квантовую механику как избавительницу нашего духа от «абсолютно механистической» Вселенной. С практиче­ской точки зрения «детерминизм» отсутствовал и в классиче­ской механике.

1 ... 21 22 23 24 25 26 27 28 29 30
Перейти на страницу:
На этой странице вы можете бесплатно читать книгу 3a. Излучение. Волны. Кванты - Ричард Фейнман.
Комментарии