Категории
Самые читаемые
onlinekniga.com » Научные и научно-популярные книги » Прочая научная литература » Диалоги (август 2003 г.) - Александр Гордон

Диалоги (август 2003 г.) - Александр Гордон

Читать онлайн Диалоги (август 2003 г.) - Александр Гордон

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 26 27 28 29 30 31 32 33 34 ... 53
Перейти на страницу:

Конечно, это изобретение Амбарцумяна было замечательно в том смысле, что, с одной стороны, оно позволяло в рамках феноменологических представлений получать точные результаты, а с другой стороны, обладало аналогией с механикой Ньютона. Можно было коэффициент отражения среды рассчитывать так же, как рассчитывается движение частицы в заданном силовом поле.

Далее я хотел бы отметить то обстоятельство, что, начиная примерно с 50-х годов прошлого столетия, перед феноменологическим подходом стали возникать вопросы, которые заставляли обратиться всё-таки к микроскопическому рассмотрению. Так же как и в кинетической теории газов было недостаточно одного феноменологического подхода, так и в теории переноса нужно было на каком-то этапе обратиться к микроскопическому подходу. Эти вопросы были связаны с исследованием свойства когерентности волнового поля. То есть речь шла о согласовании или корреляции фаз волнового поля в разных точках пространства. Вопросы, связанные с изучением свойств когерентности волновых полей долгое время шли параллельно с разработкой вопросов переноса излучения и независимо.

Так, в 30-х годах Ван Циттерт и Цирник рассмотрели вопрос о свойствах когерентности излучения теплового источника, например, Солнца. Вопрос стоял так: нельзя ли тепловое излучение использовать для того, чтобы наблюдать явления дифракции, можно ли в тепловых лучах наблюдать явление дифракции? Если можно, то какой шаг должен быть у дифракционной решётки, то есть насколько она должна быть мелкой? И Ван Циттерт и Цирник, в частности, выяснили, что тепловое изучение Солнца на поверхности Земли всё-таки такими когерентными свойствами обладает. И пришли к выводу, что так называемая область когерентности теплового излучения Солнца на экране, который лежит на поверхности Земли, составляет где-то 20 длин волн света. Это значит, что если сделать дифракционную решётку с шагом порядка длины волны света, то можно наблюдать дифракционную картину в солнечном свете.

Но в 50-х годах вопрос о когерентности волновых полей стал рассматриваться более обстоятельно. И были сформулированы законченные представления о свойствах когерентности волновых полей. В частности, благодаря трудам американского учёного Эмиля Вольфа. В 50-х годах интерес к свойствам когерентности так возрос благодаря тому, что были созданы генераторы, квантовые генераторы излучения СВЧ и оптических частот – мазеры и лазеры. И, естественно, вызывал большой интерес вопрос о том, как такие свойства высоко когерентных источников будут изменяться по мере распространения в рассеивающей среде. Было ясно, что при распространении в рассеивающей среде свойства когерентности даже плоской монохроматической волны, которая всюду когерентна, будут уменьшаться. И такое излучение станет только частично когерентным. И вопрос был чисто практический: в состоянии ли феноменологические представления о переносе излучения в рассеивающей среде описать изменения свойств когерентности излучения при прохождении через рассеивающую среду.

Микроскопический подход к рассмотрению многократного рассеивания волн в рассеивающих средах к концу 60-х годов был уже достаточно разработан, чтобы дать ответ на этот вопрос. И ответ был дан положительный. Это произошло следующим образом. Но, прежде всего, два слова относительно микроскопического подхода. Согласно этому подходу, рассеивающая среда – это набор частичек. Обычно они считаются диэлектрическими частичками с заданным показателем преломления, например, диэлектрические сферы. Рассеяние волны на каждой такой сфере, конечно, происходит согласно волновым представлениям. Сложность этих процессов многократного рассеяния состоит в том, что частиц много, и волновое излучение испытывает на них многократное рассеяние, причём, оно может возвращаться к одной и той же частице обратно. Но эти трудности микроскопического подхода к концу 60-х годов всё-таки были преодолены, и был даже сформулирован некоторый физический критерий применимости феноменологических представлений при переносе излучения в рассеивающей среде.

В чём же этот критерий заключается? Пожалуйста, будьте добры, картинку четыре. Оказалось, что феноменологические представления совершенно не в состоянии описывать процессы повторного рассеивания волны на одном и том же рассеивателе, которые изображаются петлями. Когда волна начинает движение на одном рассеивателе, потом испытывает рассеивание на каких-то других рассеивателях и потом возвращается опять к первому, исходному рассеивателю. Так вот такие петли феноменологическое представление учесть совершенно не в состоянии. Это просто понять – потому что эти петли мешают введению представления об эффективной рассеивающей неоднородности среды, таким образом, чтобы можно было разделить элементарные акты рассеивания на неоднородности и свободный пробег излучения между отдельными неоднородностями. Когда же петель нет, то тогда роль отдельной эффективной неоднородности играет просто отдельная частица. Но этого мало – нужно ещё, чтобы эти частицы были в основном расположены относительно друг друга в дальней волновой зоне так, чтобы волна, рассеянная на какой-то частице, приходила бы к другой частице после свободного пробега с достаточно хорошо сформированным волновым фронтом, каждый элемент которого можно рассматривать как плоскую волну.

При соблюдении этих условий можно ввести основную величину феноменологического подхода, лучевую интенсивность, которая определяет поток энергии излучения в заданном направлении, и эти лучевые интенсивности, согласно феноменологическому подходу, действительно можно просто складывать между собой, не учитывая фазы волн. Но, тем не менее, эта лучевая интенсивность определяет не только поток энергии излучения, но является и угловым спектром волнового поля, и таким образом позволяет определить, каким образом свойства когерентности излучения изменяются при распространении в рассеивающую среду.

При таком микроскопическом обосновании феноменологических представлений удалось детально проследить за тем, как происходит дифракция волны при многократном рассеивании на неоднородностях и как при этом изменяется свойство когерентности волнового поля. Собственно говоря, здесь упомянутый результат Ван Циттерта и Цирника, касающийся свойств когерентности источника теплового излучения был как бы вмонтирован в феноменологические представления о переносе излучения на основе микроскопических представлений.

Но здесь нужно, пожалуй, опять вернуться к сформулированному критерию применимости феноменологических представлений о переносе излучения в рассеивающей среде. Как было уже сказано, можно выбросить все петли с повторным рассеянием на одном и том же рассеивателе. Но спрашивается: можно ли их действительно выбросить? А не дают ли они всё-таки большой вклад? Тогда феноменологические представления могут оказаться просто не обоснованными.

Но как показывает рассмотрение, большинство петель действительно дают маленький вклад, и в этом можно убедиться таким образом. Ведь у нас частицы имеют случайное распределение в пространстве. Мы можем их случайно сдвинуть в каждой петле. При этом случайно изменяются набеги фаз волн, которые рассеиваются на частицах петли, и вклад петли становится малым. Однако всё-таки существуют такого рода петли, вклад которых остаётся заметным даже при таком случайном смещении частиц, которые входят в петлю. И анализ этих специальных процессов повторного рассеивания излучения на одном и том же рассеивателе привёл в 69-73-м годах к предсказанию нового явления – слабой локализации излучения в рассеивающей среде. А это явление слабой локализации излучения оказалось предвестником так называемой сильной локализации Андерсона, и вызвало большой интерес как с точки зрения теоретического рассмотрения, так и с точки зрения эксперимента, и вообще заставило пересмотреть основные представления феноменологической теории переноса излучения – и даже в целом представления о переносе излучения в рассеивающих средах.

Дальше я хотел бы остановиться на некоторых вопросах, связанных с локализацией излучения с точки зрения опять-таки феноменологических представлений. В 58-ом году, как известно, была опубликована работа американского физика Андерсона, который показал, что в некоторых решётках, в некоторых решётчатых системах, в узлах которой расположены притягивающие потенциалы, электроны перестают диффундировать, если внесён достаточный беспорядок в распределение этих потенциалов в узлах решётки. То есть электрон остаётся на том месте, где он был в начальный момент. Андерсон показал, что в трёхмерных решётках это явление, получившее название локализации Андерсона, наступает только в том случае, если беспорядок достаточно большой. Но вслед за Андерсоном вскоре было показано, что в одномерных цепочках такое состояние локализации существует при любом, сколь угодно малом беспорядке.

1 ... 26 27 28 29 30 31 32 33 34 ... 53
Перейти на страницу:
На этой странице вы можете бесплатно читать книгу Диалоги (август 2003 г.) - Александр Гордон.
Комментарии