История лазера - Марио Бертолотти
Шрифт:
Интервал:
Закладка:
В 1936 г. Эйнштейн вынужден был заменить своего любимца В. Майера. Оказалось, что он, как только прибыл в Институт, не постеснялся дистанцироваться от своего шефа. Их сотрудничество выражалось лишь в одной работе, опубликованной в 1934 г., после которой интересы Майера обратились к чистой математике. Таким образом, Эйнштейн в 1936—1937 гг. взял двух новых ассистентов: Петера Бергмана (1915-2002) и Леопольда Инфельда (1893-1968). Он хотел, чтобы они продолжали работать с ним и далее, но возникли административные трудности. В конце концов должность Бергмана была утверждена, а Инфельда — нет. Эйнштейн смирился с этим, а Инфельд в течение лета 1937 г писал книгу. Когда эта книга, «Эволюция физики», вышла в 1938 г., она принесла авторам больше чем те шестьсот долларов, которые Эйнштейн просил для Инфельда от Института.
Совместная работа с Натаном Розеном 1937 г. содержала решение его уравнений поля, которые описывали гравитационные волны. Знаменитая работа в соавторстве с Б. Хофманом (1906—1986) и Л. Инфельдом была посвящена выводу уравнения движения частиц из уравнений гравитационного поля. Даже после своей отставки в 1945 г. Эйнштейн продолжал работать вплоть до самой смерти. Он умер в возрасте 76 лет 18 апреля 1955 г.
Важной характеристикой отношения Эйнштейна к фундаментальным проблемам физики было то, что он задавался вопросами лишь в отношении обоснованности тех концепций и соотношений, которые рассматривались как истинные. В этом отношении он был философом. Согласно его воззрениям, концепции являются свободными изобретениями и аксиомами и фундаментальные законы теории предположительны. Их нельзя вывести индуктивно из эксперимента или наблюдений. С другой стороны, теория должна делать возможным выводы и предсказания, которые можно проверить экспериментом, и это определяет ее ценность. Итак, наука требует трех видов человеческой активности: человеческой изобретательности, логико-математической дедукции, а также наблюдений и эксперимента. Согласно Эйнштейну, процесс создания развивается не только опытом и предварительно существующими теориями, но также чувством структурной простоты и математической красоты.
ГЛАВА 6
ЭЙНШТЕЙН И СВЕТ, ФОТОЭЛЕКТРИЧЕСКИЙ ЭФФЕКТ И ВЫНУЖДЕННОЕ ИСПУСКАНИЕ
В июне 1905 г., когда Эйнштейн опубликовал в т. 17 Annalen der Physik свою революционную работу Uber einen die Erzeugung und Verwandlung des lichtes betreffenden heuristischen Gesichtpunkt (об эвристической точке зрения, касающейся возникновения и преобразования света), все были убеждены, что свет состоит из электромагнитных волн. Эйнштейн, однако, в этом усомнился, и выявил двойственную природу света: одновременно подобную и частице, и подобную волне. Хотя он был довольно критичен к теории Планка, он показал, какие фундаментальные следствия можно извлечь из нее, и тем самым вызвал кризис классической физики. В то время Эйнштейну было 26 лет. Его работа появилась в том же томе журнала, в котором он уже опубликовал две другие фундаментальные работы: одну работу по статистике, относящуюся к броуновскому движению, которая позволяла прояснить старый спор о «физическом» существовании молекул, и другую работу, в которой он представил специальную теорию относительности. Все три статьи сделали этот том журнала Annalen der Physik одним из самых выдающихся во всей научной литературе.
Фотоэлектрический эффект
Эту работу в настоящее время рассматривают как работу Эйнштейна по фотоэлектрическому эффекту. Однако она имеет гораздо большую значимость. В ней Эйнштейн установил из общих принципов статистической термодинамики, что энтропия излучения, описываемая законом распределения Вина, имеет такую же форму, как и энтропия газа элементарных частиц. Эйнштейн использовал этот аргумент для заключения, с эвристической точки зрения, что свет состоит из квантов, каждый из которых содержит энергию, которая дается произведением постоянной Планка на частоту света. Он применил это заключение для объяснения некоторых явлений, среди которых был и фотоэлектрический эффект. Он писал:
«Волновая теория, работая с непрерывными функциями, оказывается корректной для представления чисто оптических явлений и вряд ли будет заменена какой-либо другой теорией. Однако, следует иметь в виду, что оптические наблюдения относятся к усредненным по времени значениям, а не к мгновенным значениям. Возможно, что, несмотря на полное экспериментальное подтверждение теории дифракции, отражения, дисперсии и др., теория света, основанная на непрерывных функциях, может привести к противоречиям, если мы применим ее к явлениям получения и преобразования света. В самом деле, мне кажется, что наблюдения в области «черного тела», фотолюминесценции, генерации катодных лучей ультрафиолетовым излучением и другие группы явлений, связанных с генерацией и преобразованием света, могут быть лучше поняты на основе предположения, что энергия в свете распределена в пространстве не непрерывно. Согласно представляемому теперь же предположению, энергия в пучке света, испускаемого точечным источником, не распределяется непрерывно на все больший и больший объем в пространстве, но заключена в конечном числе квантов энергии, локализованных в точках пространства, которые распространяются, без какого-то бы ни было дробления, и испускаются и поглощаются лишь как целое».
Эйнштейн использовал слова «кванты энергии». Термин «фотон» был введен значительно позже, в 1926 г., американским химиком Г. Н. Льюисом (1875—1946), одним из отцов современной теории химической валентности.
Получение катодных лучей (т.е. отрицательно заряженных частиц, определенных как электроны) с помощью ультрафиолетового света было фотоэлектрическим эффектом, который был открыт в то время. Ирония заключалась в том, что это явление было описано в 1887 г. Генрихом Герцем во время его блестящего подтверждения электромагнитной (волновой) теории света, полученного с помощью его открытия электромагнитных волн. В следующем году это явление было исследовано Вильгельмом Гальваксом (1862— 1947), который, в частности, показал, что определенные металлические поверхности теряют некоторый электрический заряд, становясь положительно заряженными, при облучении этих поверхностей ультрафиолетовым светом. Позднее независимо друг от друга Дж. Дж. Томсон и Филипп Ленард (1862— 1947) показали, что этот эффект получается в результате испускания отрицательно заряженных частиц, электронов, металлической поверхностью. Поскольку первоначально металл не имеет избыток какого-нибудь заряда, то если испускаются отрицательные заряды, на металле должен оставаться положительный заряд, который компенсировался отрицательным зарядом. Ленард продолжил исследования этого явления и в 1902 г. представил детальные результаты в пространной статье, опубликованной в Annalen der Physik. В этой статье он сообщил о двух важных фактах. Первый факт заключался в том, что электроны с поверхности определенного металла эффективно получаются лишь при использовании света определенной частоты. Второй факт был связан со скоростью (кинетической энергией) испускаемых электронов, которая не зависела от интенсивности облучаемого излучения.
Эйнштейн в своей работе дал объяснение фотоэлектрического эффекта, как пример применения его теории световых квантов. Согласно ему, энергия световых волн распространяется не как волна, но скорее как частица (Эйнштейн назвал ее «квантом энергии»), которая имеет энергию обратно пропорциональную длине волны света. Число квантов пропорционально интенсивности света. Чем интенсивней волна, тем больше квантов она содержит. Когда квант света сталкивается с электроном в металле, он сообщает этому электрону всю свою энергию и исчезает. Электрон тратит часть этой энергии на то, чтобы покинуть металл, а остаток идет на кинетическую энергию. Интенсивность светового пучка, будучи пропорциональной числу квантов, не влияет на энергию электронов, но определяет их полное число.
В письме своему другу Конраду Хабихту (1876—1958) Эйнштейн писал о своей работе:
«Она относится к излучению и к энергетическим характеристикам света и, как вы увидите, является очень революционной».
Несмотря на такую декларацию, в обсуждениях физической интерпретации закона Вина и при изложении концепции квантов света, Эйнштейн не считал, что он порывает с традициями. Вводя квант света, он применял когерентный подход к статистическим методам, относящимся к теории теплового излучения. Однако он назвал свое введение гипотезы световых квантов «революционным» шагом, поскольку он полагал, что это противоречит электродинамике Максвелла, требующей, чтобы излучение было непрерывным потоком энергии в пространстве.
Чтобы понять, как Эйнштейн смог построить такую теорию как раз в то время, когда Планк старался продемонстрировать, что его теория квантования осцилляторов была не более чем уловкой для вычислений, нужно рассмотреть личностные особенности этих двух ученых. Они придерживаясь разных точек зрения. Планк был знаменитым и зрелым ученым, который стремился поддержать свой престиж в академических кругах, и избегал выходить за пределы тех научных теорий, которые были хорошо известны в то время. Все его усилия были сконцентрированы на том, чтобы сделать свое открытие частью объяснения, согласующегося с теориями Максвелла и Больцмана.