Категории
Самые читаемые
onlinekniga.com » Домоводство, Дом и семья » Дом, семья » Всемирный разум - Майкл Хорост

Всемирный разум - Майкл Хорост

Читать онлайн Всемирный разум - Майкл Хорост

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 27 28 29 30 31 32 33 34 35 ... 58
Перейти на страницу:

Гены – это просто инструкции, разумеется. Сами по себе они ничего не делают. Вы можете купить в IKEA стол, однако инструкция по его сборке не заставит все его части волшебным образом собраться. Однако гены «командуют» синтезом белков в клетке, а вот белки-то и определяют происходящее. Судьбоносные протеины растительного происхождения в нейронах мыши проявляли способность реагировать на свет, и его луч теперь мог приводить в возбуждение саму нервную клетку.

Мышь, которая крутится против часовой стрелки, представляет собой нечто совершенно новое: она стала предвестницей того, как могут соединиться животное, растение и технология. Студенты знали, что это предвещает торжество беспрецедентно мощных методов изменения мозговой деятельности. В первую очередь, последние можно использовать в медицинских целях (для лечения некоторых болезней), а затем для изучения взаимодействия головного мозга с телом – интерпретируя информацию, поступающую от наших органов чувств. И в конце концов, эти же методики могут содействовать слиянию человека с машиной.

А начиналось все с водорослей…

Рассказ о новой технологии следовало бы начинать с необычного творения природы – водорослей, плавающих на поверхности водоемов. В ранние 1990-е немецкий биолог Питер Хагеманн (Peter Hegemann) экспериментировал с существом, состоявшим из одной клетки, называемым хламидамонадой ( Chlamydomonas ) и представлявшим собой, если обойтись без специальной терминологии, одноклеточную водоросль. Под микроскопом она выглядела как маленький футбольный мячик с хвостом. Но стоило облучить этот организм светом, как хвост начинал бешено вращаться, продвигая водоросль вперед.

Хагеманн спросил себя: каким образом это одноклеточное, не имея ни глаз, ни мозга, способно реагировать на свет? Как оно «видит»? Что заставляет его «действовать»? В сущности, ученого интересовало, как совокупность молекул узнает о том, что творится в окружающем мире. Если формулировать предельно лаконично, как «работает» жизнь.

Ответ медленно вызревал в течение нескольких лет. Хагеманн и его коллеги обнаружили, что клеточная мембрана усеяна спиралевидными молекулами белка. Ученые предположили: как только фотон света разогревает одну из таких молекул, она распрямляется, теряя свою спиралевидность и создавая в мембране крошечное отверстие – пору. Электрозаряженные ионы следуют через последнюю, меняя электрический потенциал мембраны. Та, в свою очередь, отдает свой небольшой разряд, импульс от которого и приводит в движение хвост. И все «устройство» плывет вперед [116] .

Это было отличное исследование, посвященное клетке. А сама одноклеточная водоросль – ну что за прелесть! Однако, с точки зрения перспектив нейронауки, она – существо совершенно бесполезное, хотя и очаровательное. Какой вклад может внести в нейробиологию одно отдельно взятое одноклеточное? Но оказалось, что с некоторыми фрагментами молекулярной структуры можно обходиться как с фрагментами текста в Word’е: «копировать» у одного существа (команда «Copy») и «вставлять» в другое (команда «Paste»). Например, в 1977 году ученые вставили ДНК, отвечающую за выработку инсулина у человека, в бактерию E. coli [117] . И та немедленно принялась вырабатывать инсулин, в точности соответствующий человеческому, – и это произвело настоящую революцию в лечении диабета.

Таким образом, когда ученые находят в какой-нибудь клетке представляющий интерес структурный элемент, они пытаются встроить его в другую клетку и выяснить, что получится. В 1999 году Роджер Тсьен (Roger Tsien) [118] , биолог из университета Сан-Диего, Южная Калифорния, внимательно следил за работой Френсиса Крика, призывающего найти наилучшие способы целенаправленной передачи нейронам импульсов возбуждения. Когда Тсьен прочитал об экспериментах с хламидомонадой, он задал себе прямой вопрос: можно ли эту функцию одноклеточной водоросли (реагировать на свет) «встроить» в нервную клетку? Для решения такой задачи необходимо определить, какой ген отвечает за синтез белка, входящего в состав оболочки хламидомонады и проявляющего чувствительность к свету. Его можно было бы перенести в нервную клетку и, как надеялся Тсьен, заставить нейрон возбуждаться при облучении световыми лучами.

Само по себе это еще не великое достижение, поскольку привести нервную клетку в активное состояние можно и с помощью электрического тока. Самым волнующим было бы добиться того, чтобы встраиваемый ген обеспечивал нужную реакцию на свет со стороны лишь нейрона определенного типа. В данной связи исследователям необходим «промоутер» (promouter) – специфический фрагмент ДНК, которым можно маркировать ген для контроля над тем, используется он с заданной целью или нет.

И вот что проделали ученые. Они встроили чувствительный к свету ген в структуру вирусов и ввели некоторое количество таких вирусов в мозг, заразив один или два кубических миллиметра мозговой ткани. То есть в каждом без исключения нейроне на данном участке мозга поселился новый ген. Звучит устрашающе, поскольку обычно вирусы – вредоносные маленькие существа. В дикой природе вирусы вводят свою ДНК в пораженные ими клетки, заставляя последние производить новые порции вирусов до тех пор, пока эти клетки полностью не истощатся и не погибнут. Однако вирус можно видоизменять таким образом, чтобы он встраивал в клетку-мишень лишь небольшой фрагмент своей ДНК. Тот соединяется с клеточной ДНК, которая начинает производить только белок с определенными свойствами, а не множество новых вирусов. «Инфицирование» подобного рода не приносит вреда.

Благодаря своему «промоутеру», встраиваемый ген проявляется лишь в нейронах определенного типа, а все другие – игнорируются. Понять, в чем тут дело, поможет следующая аналогия. Вообразите, что возможность ловить мяч в игре имеют только левши. Как вы этого добьетесь? Раздадите всем без исключения игрокам лишь по левой перчатке. Правшам тогда останется стоять без дела, волнуясь и взывая о помощи. А левши будут действовать без ограничений. Точно так же, как они отмечены («tagged») наличием одной только левой перчатки и поэтому могут действовать строго определенным образом, нейрон заданного типа отмечен («tagged») тем, что в него встроен ген, который будет использоваться так, как задумано экспериментаторами. Вот они, искомые итог и награда! Теперь в одном кубическом миллиметре мозговой ткани можно стимулировать исключительно нейроны определенного типа – не затрагивая ничего вокруг. Иными словами, исследователи могут воздействовать только на те нейроны, которые, например, продуцируют допамин или ацетилхолин, или GABA (ГАБА, гамма-аминомасляная кислота. – Прим. пер. ) [119] . Контроль исключительной точности. Никаких побочных эффектов.

Тсьен знал, что эта методика будет работать. Однако совмещение генов растений с животными клетками имело дальний прицел. Смогут ли чувствительные к свету гены хламидомонады проявить свои свойства в чужой для них клеточной среде? Сможет ли молекула белка открывать и закрывать поры в мембране с той быстротой, которая нужна для мгновенного получения десятками нейронов импульса возбуждения? Если бы в то время у биологов спросили, ждет ли Тсьена успех, большинство из них, вероятно, ответили бы отрицательно.

Однако Тсьен все равно пытался добиться своего. Он попросил Хагеманна выслать ему чувствительный к свету ген хламидомонады. Тот не был уверен, какой именно требуется, и поэтому выслал два варианта. Тсьен и его студенты-выпускники должным образом встроили в нейроны, с которыми тогда работали, оба. Однако ни один из них не отреагировал на облучение светом. Тсьен повторил попытку, используя теперь лишь один ген. С тем же результатом. «Получив два сокрушительных удара подобного рода, вы должны признать, – говорил он впоследствии, – что находитесь на ложном пути и вам следует попробовать нечто иное». Так он и переключился на другое направление исследований, а четвертый ген нетронутым положил на хранение в холодильник, стоявший в его лаборатории.

Прошло не менее трех лет, прежде чем Хагеманн и его сотрудники в конце концов обнаружили нужный ген. Они встроили его в яйцеклетку лягушки, подали на него луч света и – вуаля! Электрический ток заструился по мембране лягушачьей яйцеклетки.

Как только Тсьену на глаза попалась написанная Хагеманном и его коллегами научная статья, он сразу понял, какой ген ему нужен. Разумеется, тот самый, что был когда-то отложен. Очень похоже на то, как вы покупаете четыре лотерейных билета, обнаруживаете, что три из них пустые, и раздраженно отбрасываете четвертый. После чего видите, как кто-то другой подбирает этот билет и выигрывает по нему 10 миллионов. «Мы ошиблись не в том, – оглядываясь назад, признавался с натянутой улыбкой Тсьен, – что положили его в холодильник, а в том, что упустили время извлечь обратно». Однако такова природа науки: «Порой вы выигрываете, порой – проигрываете». (Дело закончилось тем, что Тсьен кое-что выиграл. Нобелевскую премию 2008 года – за свои новые исследования, посвященные тому, как с помощью генной инженерии заставить светиться клетки определенного типа).

1 ... 27 28 29 30 31 32 33 34 35 ... 58
Перейти на страницу:
На этой странице вы можете бесплатно читать книгу Всемирный разум - Майкл Хорост.
Комментарии