Удивительная генетика - Вадим Левитин
Шрифт:
Интервал:
Закладка:
А вот при лечении ТКИД в качестве вектора использовался ретровирус, и у двоих из 12 детей развилась лейкемия. Но большинство специалистов всетаки решили, что в данном случае риск оправдан, так как без лечения смерть гарантирована, а лейкоз – меньшее зло. Для доставки генов в клетки-мишени применяются и другие модифицированные вирусы (вирус герпеса, аденовирусы), и хотя результаты, бесспорно, впечатляют, иногда пробежит холодок по спине: кто знает, какие побочные эффекты может вызвать этот вирус…
Правда, существуют и альтернативные, невирусные способы переноса генетического материала в клетку (например, с помощью липосом, умеющих просачиваться через клеточную мембрану, специфических антител и путем непосредственной бомбардировки клеток микрочастицами золота, к которым присоединены фрагменты ДНК), но все эти методы гораздо менее надежны. В клеточные ядра попадает ничтожная часть терапевтических генов, а в хромосомы они встраиваются с большим трудом.
В последнее время активно разрабатываются генные технологии по созданию искусственных хромосом с последующим их внедрением в клетки-мишени. Эксперименты на животных дают неплохие результаты, и ученые считают, что конструирование искусственных хромосом со встроенным лечебным геном для терапии наследственных болезней человека – дело ближайшего будущего. Вот что пишут специалисты:
Вводить хромосомы в ядро можно будет либо заключив их в контейнеры-липосомы, либо с помощью инъекций иглой атомно-силового микроскопа. Японские нанотехнологи в ноябрьском номере журнала Nano Letters за 2004 год опубликовали статью, в которой описан зонд длиной 8 микрометров и шириной 200 нанометров. В оболочке ядра клетки после прокола такой иглой образуется брешь диаметром 1 микрометр, которая исчезает после извлечения иглы. Таким способом можно проводить нанохирургические операции с генетическим материалом непосредственно в живых клетках без нарушения целостности их микроструктур.
Бум генной терапии пришелся на середину 1990-х годов, когда «отремонтированные» кроветворные клетки удалось пересадить детям с тяжелой формой врожденного иммунодефицита. На первых порах все шло хорошо (детей спасли от неминуемой смерти), но у двух больных развилась лейкемия. Откуда взялась эта напасть?
Американские биологи создали дрожжевую культуру, клетки которой содержат как обычные, так и синтетические хромосомы
Беда в том, что доставить нужный ген по адресу – всего лишь полдела. Нужно еще научить клетку читать вирусный белок. С другой стороны, вирус («отредактированный» вектор) тоже хочет быть прочитанным. Для этой цели у него есть промотор – особый фрагмент ДНК, который, взмахнув флажком, дает команду: поехали! Но вирусный промотор не подчиняется клеточным регуляторам, поэтому клетка читает не только полезный ген, но и соседние, оказавшиеся рядом. А среди них легко может оказаться латентный (скрытый) онкоген, запускающий злокачественное перерождение клетки. А поскольку каждому ребенку вводят около миллиона таких химер, вероятность того, что плохой ген вдруг неожиданно «выстрелит», резко увеличивается. Поэтому многообещающую программу без лишнего шума свернули.
Однако совсем недавно французские и американские ученые объявили, что разработана надежная генно-инженерная методика лечения талассемии[50] – врожденного заболевания крови. Тяжелые формы талассемии заканчиваются смертью больных в раннем детстве. Выбор у них невелик: или регулярные гемотрансфузии (переливания крови), или пересадка донорского костного мозга. В первом случае больной обречен на пожизненные процедуры, а во втором его подстерегает хронический иммунный конфликт. Но ученые сумели отыскать третий, неочевидный, путь. Они внедрили в клетки костного мозга больного неповрежденную версию гена, после чего модифицированные кроветворные клетки были возвращены на «родину» и занялись своим прямым делом – созреванием и размножением. Результат превзошел все ожидания:
Через год после лечения пациент смог отказаться от переливаний крови и вот уже 21 месяц успешно обходится без них, хотя прежде вынужден был делать их ежемесячно, начиная с трехлетнего возраста (больному на момент операции исполнилось 15 лет. – Л.Ш.). По сути дела, речь идет о радикальном и полном излечении от тяжелой генетической болезни.
Но бить в литавры пока рано. Авторы, к сожалению, не пишут о том, каким образом им удалось выявить и нейтрализовать латентные онкогены. Быть может, притаившаяся лейкемия еще покажет себя во всей красе. Или не покажет, так как выборка минимальна – один-единственный человек. А вот когда счет пойдет на десятки, тогда и поговорим.
Стволовые клетки, или Сделай сам
«У господа бога впервые появился конкурент», – не так давно во всеуслышание заявил один из авторов журнала Nature. Он имел в виду успехи синтетической биологии последнего десятилетия. Однако прежде чем говорить о конструировании искусственных микроорганизмов, закончим разговор о стволовых клетках, начатый в предыдущей главе.
Помните о клоне наиболее пластичных стволовых клеток, умеющих превращаться в любую ткань? Их называют эмбриональными стволовыми клетками, потому что они образуются в процессе эмбрионального развития и откладываются в организме «про запас». Эти клетки получают в наши дни методом терапевтического клонирования. Суть его сводится к тому, что у человека в любом возрасте берут самую обычную клетку и пересаживают ее ядро в донорскую яйцеклетку, которая немедленно начинает дробиться – прямо в пробирке. Через пять дней она достигает стадии бластоцисты – полого шарика из нескольких сотен клеток, значительная часть которых приходится на универсальные стволовые. Такие клетки можно размножать и неограниченно долго поддерживать в виде клеточной культуры, а их полная генетическая идентичность тканям пациента исключает проблемы с иммунитетом.
Эмбриональные стволовые клетки человека под микроскопом
Но в клинической медицине их используют крайне редко – только по жизненным показаниям, когда никакое другое лечение уже не помогает. Беда в том, что они способны превратиться во что угодно, очень плохо понимают химические команды взрослого организма и склонны к неограниченному делению. Если их ввести в организм, они легко могут спровоцировать злокачественный рост или вызвать образование тератом[51], что и было не раз показано в экспериментах на животных. Например, крысам, страдающим искусственно вызванной болезнью Паркинсона[52], пересадили эмбриональные стволовые клетки и добились массового их превращения в нейроны. Сначала все шло хорошо, и состояние крыс заметно улучшилось вплоть до полного исчезновения симптомов болезни. Однако на 10-й неделе эксперимента дифференцировку[53] сохранили всего 25 % нейронов, остальные же вновь превратились в неспециализированные клетки, которые начали активно размножаться, заселяя крысиный мозг. Руководитель опытов Стивен Голдман так прокомментировал наблюдаемую картину: «Не нужно быть нейроонкологом, чтобы понять, что этот процесс – начало образования опухоли».
Однако не все так безнадежно. Стволовые клетки находят применение в ортопедии: с помощью особого сигнального белка ученые стимулируют их трансформацию в остеобласты – клетки костной ткани. Биологи научились выращивать образцы различных тканей прямо в лабораторной посуде, если удается как следует «объяснить» универсальным стволовым клеткам, во что они должны превратиться. Больному пересаживают уже готовый продукт.
Биолог Борис Жуков пишет:
В лабораториях разных стран сегодня выращивают лоскуты живой кожи (для пересадок на обожженные места), хрящи в форме уха и даже участки кровеносных сосудов – настоящие, многослойные, с эпителием внутри и мышцами в толще стенки.
А совсем недавно пришло сообщение о том, что американские ученые сумели восстановить у цыплят ранее ампутированные крылья, «запустив» группу генов семейства Wnt. Эти гены управляют формированием конечностей в период эмбрионального развития, но у взрослых животных они «молчат». Американцам удалось заставить их работать, в результате чего произошла полная регенерация удаленного крыла. А поскольку удалось активизировать эти гены у цыплят, то, в принципе, их можно «разбудить» и у человека, так как в нашем геноме они тоже присутствуют. Быть может, пройдет не так уж много лет, и технология по отращиванию утраченных рук и ног станет реальностью.
А теперь вернемся к синтетической биологии. Под ней понимается не банальная генная инженерия наподобие внедрения в бактериальную клетку полезных генов (генно-инженерный инсулин применяется с 1982 года), а создание искусственных микроорганизмов, которые будут делать абсолютно все, что мы захотим. Сотруднику швейцарского политехнического института в Цюрихе Свену Панке это видится примерно так: