История естествознания в эпоху эллинизма и Римской империи - Иван Рожанский
Шрифт:
Интервал:
Закладка:
Отличительной особенностью Эратосфена-ученого была универсальность, что делает невозможным точное определение его научной специальности. У него были исследования по математике, астрономии, географии, истории и филологии; кроме того, он сам писал стихи и поэмы. В каждую из этих областей он внес определенный вклад, хотя, может быть, и не всегда первостепенный по своему научному или художественному значению. В истории науки особенно известны его работы по географии и по измерению размеров земного шара. Об этих работах у нас пойдет речь в последующих главах, здесь же мы вкратце изложим то, что нам известно о его достижениях в области математики и исторической хронологии.
К сожалению, тексты сочинений самого Эратосфена до нас не дошли. Позднейшие античные авторы (Никомах, Теон Смирнский, Папп) приводят в своих книгах названия двух трактатов Эратосфена — «О средних» (Περί μεσοτήτων) и «Платоник» (Πλατωνικός). Более или менее краткие изложения первого из них позволяют заключить, что в нем Эратосфен исследовал различные виды целочисленных пропорций, сводя их путем различных преобразований друг к другу. Трактат начинался с философского введения, в котором утверждалось, что «отношение есть источник пропорциональности и начало возникновения всего, что происходит в порядке. Все пропорции возникают из отношений, а источник всех отношений есть равенство»[100]. Аналогичные, характерные для позднего Платона идеи развивались, по-видимому, и в диалоге «Платоник», хотя конкретное его содержание остается загадочным. Кроме того, еще в древности получили известность два математических открытия Эратосфена. Первым из них было механическое решение так называемой «делийской» задачи об удвоении куба, высеченное на камне в одном из александрийских храмов. По-видимому, не случайно Архимед изложил свой «механический» метод доказательств геометрических теорем в письме, адресованном именно к Эратосфену. Вторым открытием александрийского энциклопедиста было так называемое «решето» (κόσκινον) — простой способ выделения простых чисел из любого конечного числа нечетных чисел, начиная с трех. Этот способ изложен Никомахом из Геразы, написавшим около конца I в. н. э. «Введение в арифметику» (Εισαγωγή αριθμητική), в котором были популярно пересказаны достижения греческой науки в этой области.
В целом можно сказать, что в области математики Эратосфен отнюдь не был творческим гением, прокладывавшим, подобно Архимеду, новые пути, хотя и находился в курсе достижений современной ему математической науки.
Помимо математических работ (Эратосфена, имеет смысл упомянуть о его изысканиях в области исторической хронологии. Для греков классической эпохи было характерно удивительное равнодушие к проблемам хронологии: пи у кого из ученых V–IV вв., включая даже Аристотеля, мы не найдем хронологических отсылок, которые позволили бы устанавливать точные даты исторических событий. Отчасти это можно объяснить отсутствием общепринятой системы летосчисления в ту эпоху, что, в свою очередь, вызывалось разрозненностью греческих городов-государств. В централизованных деспотических монархиях Вавилонии и Египте уже за тысячелетия до нашей эры существовали хорошо разработанные системы записей исторических событий в их хронологической последовательности. В этой связи характерно, что в основу первого общегреческого летосчисления, ставшего общепринятым, были положены олимпийские игры — единственное регулярно повторявшееся событие, в котором принимали участие все полисы Балканского полуострова[101].
Интерес к хронологии в широком смысле слова появился лишь у ученых эллинистической эпохи. Уже Деметрий Фалерский составил «Список архонтов», в котором наряду с историческими сведениями сообщались некоторые данные о жизни философов, использованные последующими хронографами. Но лишь Эратосфен предпринял первую серьезную попытку пересмотреть и систематизировать всю имевшуюся к тому времени информацию хронологического характера. Имея в качестве материала для своих изысканий все богатства Библиотеки, Эратосфен провел колоссальную работу по нахождению и сопоставлению источников, по устранению неверных сведений и по установлению надежных дат. Таким образом, именно Эратосфена следует считать основоположником научной хронологии.
Основное сочинение Эратосфена по этим вопросам (Χρονογραφίαι) было в древности окружено ореолом непогрешимости, но в то же время, по-видимому, имело слишком специальный характер, чтобы получить широкое распространение. Содержащиеся в нем сведения с добавлением новых данных были затем использованы историком II в. Аполлодором, написавшим большую дидактическую поэму (Χρονικά), в которой ямбическими триметрами излагалась вся история Греции от падения Трои (приуроченного на основании вычислений Эратосфена к 1184 г.) до 149 г. Все последующие авторы, включая Диогена Лаэртия, пользовались именно этой поэмой, а не исходным сочинением Эратосфена.
Младшим современником Эратосфена и Архимеда был александрийский математик Никомед. Время его жизни определяется двумя указаниями: с одной стороны, он критикует предложенный Эратосфеном метод решения «делийской» задачи об удвоении куба, с другой же — его имя упоминается Аполлонием из Перги. Как математик Никомед известен открытием новой алгебраической кривой — конхоиды, или кохлоиды (в полярных координатах уравнение этой кривой имеет вид ρ=a+b/cosφ). Как рассказывают древние источники, в частности Прокл, Никомед очень гордился этой кривой и построил прибор для ее черчения. Он применил эту кривую для решения той же «делийской» задачи, а также для решения другой знаменитой задачи древности — трисекции угла[102]. Этим исчерпываются наши сведения о математических достижениях Никомеда.
Аполлоний из Перги был третьим великим математиком александрийской школы (к первым двум мы относим Эвклида и Архимеда). О времени его жизни имеются противоречивые свидетельства; в связи с этим некоторые исследователи полагают, что он родился около 260 г., другие же смещают эту дату примерно на три десятилетия. Имеются основания считать, что около 170 г. он был еще жив[103]. Родившись и получив первоначальное воспитание на южном побережье малоазийского полуострова, Аполлоний еще юношей уехал в Александрию, где прожил большую часть своей дальнейшей жизни, общаясь с александрийскими математиками и ведя научную, а затем и преподавательскую работу. Как сообщает он сам в предисловии к первой книге «Конических сечений», он начал работу над этим трудом по настоянию некоего геометра Навкратеса, который слушал его лекции в Александрии. Подобно Архимеду, Аполлоний посылает отдельные книги «Конических сечений» знакомым ему математикам — Эвдему из Пергама и Атталу (возможно, из Эфеса)[104]. По-видимому, он посещал эти города еще до окончания своего основного труда, а потом снова вернулся в Александрию. Из предисловия ко второй книге следует, что в Эфесе Аполлоний познакомил Эвдема с другим своим коллегой — геометром Филонидом. Из этих немногих данных можно заключить, что к концу III в. в ряде греческих городов появились математики, которые, хотя и не были творческими гениями, все же имели настолько высокую квалификацию, что могли разбираться в работах Аполлония и вести с ним дискуссии по различным проблемам геометрии.
Основное сочинение Аполлония «Конические сечения» (Κωνικά) состояло из восьми книг. Только первые четыре дошли до нас в оригинальном греческом тексте; три последующие сохранились в арабском переводе, а последняя, восьмая, считается утерянной, хотя о ее содержании мы можем судить по изложению Паппа в его «Математическом сборнике». Сам Аполлоний в предисловии к первой книге указывает, что первые четыре книги содержат общую аксиоматическую теорию предмета, а в остальных дается развитие найденных в первых книгах фундаментальных принципов.
Сама по себе идея конических сочинений не была новостью в греческой математике. Первым математиком, который еще в IV в. занялся исследованием этой проблемы (и, кстати сказать, ввел в употребление термин «конические сечения»), был ученик Эвдокса Менехм. После него конические сечения исследовались мало известным нам математиком Аристсом, а затем Эвклидом, написавшим по этому вопросу но дошедшее до нас сочинение. Нο, как отмечает Аполлоний в предисловии к своей первой книге, Эвклиду не удалось дать полной теории вопроса. Эта теория была развита и «Конических сечениях» Аполдония настолько полно и в такой законченной форме, кто никто из последующих математиков древности не смог к ней добавить буквально ничего. Все доказательства Аполлония имеют чисто геометрический характер, и в этом отношении ого труд представляет собой высшую точку, которой достигла греческая геометрическая алгебра. Перевод рассуждений Аполлония на алгебраический язык был произведен в XVII в. создателями аналитической геометрии — Декартом и Ферма. Надо, однако, признать, что, и не пользуясь алгебраической символикой, Аполлоний в своем труде очень близко подошел к методам аналитической (и даже проективной) геометрии. Так, например, он классифицирует все три вида конических сечений по характеру определяющих их уравнений (по его терминологии, «симптомов»), хотя эти уравнения записываются им в словесно-геометрической форме. По сути дела, Аполлоний дал законченную теорию кривых второго порядка, причем эта теория была изложена им не только без каких-либо алгебраических символов, но даже без использования таких понятий, как «ноль» и «отрицательная величина», которые еще не были известны греческой математике того времени[105].