Математика. Утрата определенности. - Морис Клайн
Шрифт:
Интервал:
Закладка:
Итак, математикам не оставалось ничего иного, как прийти к печальному заключению о том, что в математике нет абсолютной истины, т.е. что математика не содержит внутри себя все законы реального мира. Аксиомы основных структур арифметики и геометрии порождены опытом, и поэтому применимость структур арифметики ограничена. Вопрос о том, где именно они применимы, может быть решен только на опыте. Попытка древнегреческих мыслителей обеспечить истинность математики, принимая за исходные самоочевидные истины и используя только дедуктивные доказательства, провалилась.
Для многих мыслящих математиков сознание того, что математика не является более сводом незыблемых истин, было невыносимым, и они не могли смириться с этим. Казалось, сам бог ниспослал им в наказание несколько геометрий и несколько алгебр, подобно тому как он, смешав языки, покарал строителей Вавилонской башни. Такие математики наотрез отказывались принимать новые творения своих собратьев по профессии.
Уильям Р. Гамильтон, несомненно, один из самих выдающихся математиков XIX в., выразил (1837) свое неприятие неевклидовой геометрии следующим образом:
Ни один честный и здравомыслящий человек не может усомниться в истинности главных свойств параллельных в том виде, как они били изложены в «Началах» Евклида две тысячи лет назад, хотя вполне мог бы желать увидеть их изложенными более просто и ясно. Геометрия Евклида не содержит неясностей, не приводит мысли в замешательство и не оставляет разуму сколько-нибудь веских оснований для сомнения, хотя острый ум извлечет для себя пользу, пытаясь улучшить общий план доказательства.
Артур Кэли, выступая в 1883 г. с речью перед Британской ассоциацией содействия развитию наук, сказал:
По моему мнению, двенадцатая аксиома Евклида [называемая также пятым постулатом, или аксиомой о параллельных] в форме Плейфера не требует доказательства, но является составной частью нашего представления о пространстве, физическом пространстве нашего опыта, с которым каждый знакомится на своем опыте, — представления, лежащего в основе всего нашего опыта… Утверждения геометрии не являются лишь приближенно истинными. Они остаются абсолютно истинными в отношении той евклидовой геометрии, которая так долго считалась физическим пространством нашего опыта.
Ту же точку зрения высказывал и Феликс Клейн (1849-1925), один из крупнейших математиков нашего времени. Хотя Кэли и Клейн сами работали в области неевклидовых геометрий, они рассматривали их как новообразования, возникающие при искусственном введении в добрую старую евклидову геометрию новых метрик — функций, определяющих расстояние между точками. Оба отказывались признать, что неевклидова геометрия столь же фундаментальна и применима к внешнему миру, как и евклидова. Разумеется, во времена, когда теория относительности еще не была создана, позиция Кэли и Клейна была вполне обоснованной.
Верил в истинность математики и Бертран Рассел, хотя он и понимал эту истинность в несколько ограниченном смысле. В 1890 г. он предпринял попытку проанализировать вопрос о том, какие свойства пространства необходимы и могут быть приняты до опыта, т.е., если бы любое из этих априорных свойств мы стали бы отрицать, то опыт утратил бы смысл. В своей работе «Очерк оснований геометрии» (Essay of the Foundations of Geometry, 1897) Рассел признал, что геометрия Евклида не является априорным знанием. В этой же книге он пришел к заключению, что из всех геометрий априорность присуща лишь проективной геометрии{58} — заключение вполне понятное, если принять во внимание то значение, которое придавали проективной геометрии на рубеже XIX-XX вв. К проективной геометрии в качестве априорных истин Рассел добавил аксиомы, общие для евклидовой и всех неевклидовых геометрий. Эти аксиомы относились к однородности пространства, конечномерности и к понятию расстояния, позволяющему производить измерения. Рассел также указал на то, что количественным соображениям должны предшествовать чисто качественные, и использовал этот тезис для подкрепления приоритета проективной геометрии.
Что касается метрических геометрий, к числу которых относятся евклидова и несколько неевклидовых геометрий, то они могут быть получены из проективной геометрии, если подходящим образом определить расстояние между точками. Поэтому Рассел считал их создание чисто техническим достижением, не имеющим философского значения. Во всяком случае, специфические теоремы метрических геометрий, с точки зрения Рассела, не являются априорными истинами. Что же касается нескольких основных метрических геометрий, то Рассел, расходясь во мнениях с Кэли и Клейном, считал, что все они логически одинаково обоснованы. Поскольку априорными свойствами из всех метрических геометрий обладают только евклидова, гиперболическая, эллиптическая и удвоенная эллиптическая геометрии, то Рассел заключил, что ими исчерпываются все возможные метрические геометрии и что евклидова геометрия — единственная из всех геометрий, применимая к физическому миру. Все остальные геометрии имеют философское значение, так как доказывают возможность существования других геометрических систем, отличных от разработанной древними греками. Оглядываясь назад, мы ясно видим, что широко распространенное пристрастие к евклидовой геометрии уступает у Рассела место пристрастию к проективной геометрии. Много лет спустя, Рассел признал «Очерк» юношески незрелым произведением, более не выдерживающим критики. Как мы увидим в дальнейшем (гл. X), Рассел вместе с другими философами выдвинул новую основу для установления истины в математике.
Настойчивость, проявленная математиками в поиске каких-либо абсолютных истин, вполне понятна. После многих столетий блистательных успехов математики в описании и предсказании физических явлений природы мысль о необходимости признать ее не коллекцией алмазов, а собранием искусственных камней была тяжела для каждого, а особенно для тех, кто был ослеплен гордостью за свои собственные достижения. Однако постепенно математики свыклись с тем, что аксиомы и теоремы их науки утратили статус истин о физическом мире. Некоторые области опыта подсказывали выбор специальных систем аксиом — для таких областей эти аксиомы и логические следствия из них были применимы достаточно точно, что позволило считать их полезным описанием действительного. Но расширение такой области может пагубно сказаться на применимости аксиом и теорем. Что касается изучения физического мира, то математика не предлагает ничего, кроме теорий, или моделей. Всякий раз когда накопленный нами опыт или специальный эксперимент показывает, что новая теория дает более точное описание реальности, чем старая, старую теорию вполне допустимо заменить новой. Отношение математики к физическому миру прекрасно выразил в 1921 г. Эйнштейн:
Если теоремы математики прилагаются к отражению реального мира, они не точны; они точны до тех пор, пока не ссылаются на действительность… Однако, с другой стороны, верно и то, что математика вообще и геометрия в частности обязаны своим происхождением необходимости узнать что-либо о поведении реально существующих объектов.
([31], с. 83-84.)Бог отвернулся от математиков, и им не оставалось ничего другого, как принять человека. Именно это они и сделали. Они продолжали развивать математику и заниматься поиском законов природы, теперь уже зная, что их открытия не составляют часть божественного плана, а являются творениями людей. Одержанные в прошлом победы помогли им вновь обрести уверенность в своих силах, а нескончаемая череда новых успехов вознаграждала их усилия. Жизнь математики спасли чудодейственное «снадобье», ею же самой составленное: колоссальные достижения в небесной механике, акустике, гидродинамике, оптике, теории электромагнитного поля{59} и инженерном деле — и невероятная точность предсказаний. Наука, которая хотя и сражалась под победоносным знаменем истины, но одерживала свои победы с помощью загадочной «внутренней силы» (гл. XV), должна быть наделена скрытой мощью, чтобы не сказать магией. Развитие математики и применение ее результатов к естествознанию происходило теперь более быстрыми темпами, чем прежде.
Осознание того, что математика не является сводом абсолютных истин, эхом отозвалось на многих областях человеческой деятельности. Начнем с естествознания. Со времен Галилея физики понимали, что в основе фундаментальных законов естествознания в отличие от математики должен лежать эксперимент, хотя ранее они на протяжении двух столетий считали, что открываемые ими законы заложены в плане мироздания. Но к началу XIX в. физики пришли к заключению, что никакие естественнонаучные теории также не являются абсолютными истинами. Если даже математика имеет свои начала в человеческом опыте и не может более отстаивать свою истину, рассуждали естествоиспытатели, то, поскольку мы используем аксиомы и теоремы математики, наши собственные теории уязвимы в еще большей степени. Законы природы открывает человек. Мы, а не господь бог, устанавливаем законы природы. Закон природы описывает человек, а не предписывает бог.