Революция в физике - Луи де Бройль
Шрифт:
Интервал:
Закладка:
Повторенное почти одновременно в Англии Дж. П. Томсоном, сыном Дж.Дж. Томсона, применившим совершенно иной метод, явление дифракции электронов вскоре стали наблюдать почти во всех странах. Это явление в разных условиях и при различной постановке опытов изучали Понт во Франции, Рупп в Германии, Кикучи в Японии и многие другие. Вскоре стали известны все его детали. Постепенно было устранено большинство мелких трудностей объяснения этого явления, которые вначале возникли. Этого удалось добиться, когда приняли во внимание, что внутри кристалла показатель преломления волн, связанных с электроном, отличен от единицы. Дифракцию электронов удалось получить и на обычной решетке, использовав почти касательное падение (Рупп), как это было ранее проделано с рентгеновскими лучами (Комптон, Тибо). Таким путем можно прямо сравнить длину волны, связанной с электроном, с шириной линий, нанесенных на металлической поверхности механическим способом.
Как это часто бывает, явление дифракции электронов, как вначале казалось, очень трудно наблюдаемое и требующее высокого искусства экспериментатора, теперь стало относительно простым и повседневным. Приборы для наблюдения явления дифракции стали настолько совершенными, что сегодня это явление можно демонстрировать студентам на лекции. Наконец, условия этих экспериментов варьировались в таких широких пределах, что справедливость основной формулы, выражающей соотношение между свойствами волны и характеристиками частицы, можно считать теперь доказанной во всем интервале энергий от нескольких электрон-вольт до миллиона электрон-вольт. Для больших значений энергии необходимо учитывать релятивистские поправки. Таким образом, косвенно подтверждаются и результаты теории относительности.
Справедливость формулы для длины волны, связанной с частицей, считается сегодня настолько очевидной, что явление дифракции электронов используется уже не для подтверждения этой формулы, а для изучения структуры некоторых кристаллических или частично ориентированных сред. Однако это уже технические применения. Ограничимся замечанием, что эксперименты по дифракции электронов дали великолепное прямое подтверждение представления о связи волн и частиц, которое послужило исходным пунктом для создания новой механики.
Заканчивая этот параграф, уместно отметить, что была получена дифракция не только электронов, но и других частиц. Так же, как и электроны, явление дифракции испытывают протоны и атомы. Подобные эксперименты очень сложны и не столь многочисленны, однако установлено, что даже здесь подтверждаются формулы волновой механики. Это не должно нас удивлять. Связь между волнами и частицами – это, по-видимому, великий закон природы, причем такой дуализм тесно связан с существованием и внутренней сущностью кванта действия. Нет никаких причин считать, что только электроны обладают такими свойствами. Неудивительно, что мы встречаемся с дуализмом волна – частица при изучении всех физических объектов.
5. Физическое объяснение волновой механики
Попытаемся теперь показать, что можно извлечь из знания волновой функции системы. Старая механика соответствует приближению геометрической оптики, и все представления и понятия, которыми она пользуется, должны быть отброшены, когда мы выходим за пределы этого приближения. Поэтому мы уже не можем применять, во всяком случае безо всяких предосторожностей, понятия положения, скорости и траектории частицы. Мы снова должны рассмотреть эти понятия и исследовать, что можно сказать, зная волновую функцию, о величинах, характеризующих частицу. Те постулаты, которые мы сформулируем, должны удовлетворять важнейшему условию: они должны вновь приводить к понятиям и результатам старой механики, как только «КСИ»-волна станет удовлетворять законам геометрической оптики.
Интерпретация волновой механики носит вероятностный характер. Какие же постулаты приходится принять физикам, чтобы пользоваться уравнениями волновой механики?
Прежде всего, поскольку «КСИ»-функция существенно комплексна, она непосредственно не пригодна для изображения физических колебаний. Однако можно попытаться образовать с помощью «КСИ»-функции действительные выражения, которые уже имеют физический смысл. Одно из них, которое в первую очередь, естественно, приходит в голову, это квадрат модуля комплексной величины «КСИ», который получается умножением волновой функции на комплексно сопряженную величину. Эту величину можно рассматривать как квадрат амплитуды «КСИ»-функции, т е. ее интенсивность в обычном смысле теории колебаний. Чтобы понять, какой смысл следует приписать этой важной величине, мы снова должны вернуться к теории света, которая нам так часто служила путеводной звездой, и выяснить с ее помощью, что означает интенсивность световых волн, если предположить существование фотонов.
Рассмотрим классический опыт по дифракции или интерференции света. Волновая теория определяет (и мы знаем, с какой огромной точностью) положение светлых и темных полос на экране. Это делается при помощи расчета интенсивности световых волн в каждой точке экрана в предположении, что энергия световых волн распределена в пространстве пропорционально их интенсивности.
Эту гипотезу, которая подтверждается различным образом в различных теориях света, упругих и электромагнитных, можно рассматривать в качестве постулата – принципа интерференции.
Теперь введем понятие фотона. Луч света можно рассматривать как поток фотонов. Тогда эксперименты по интерференции и дифракции света представляются как опыты, в которых фотоны под воздействием приборов распределяются в пространстве неравномерно, уходя из темных мест и концентрируясь в светлых. Поскольку предсказания теории подтверждаются очень точно, можно сказать, что интенсивность волн, рассчитанная по этой теории в каждой точке, пропорциональна плотности фотонов.
С другой стороны, мы уже говорили о таких удивительных экспериментах, которые обнаруживают возможность получения картины интерференции с помощью необычайно слабых световых потоков. В этих опытах интерференция происходит даже, когда фотоны проходят через интерферометр поодиночке. Поэтому для объяснения картины обычной интерференции, которая получится после большой экспозиции, нужно предположить, что интенсивность волны, связанной с каждым фотоном, в каждой точке представляет собой вероятность того, что фотон находится в этой точке. Таким образом, от статистической точки зрения мы приходим к вероятностной. Принцип же интерференции оказывается принципом, определяющим вероятность локализации фотонов. Если теперь вернемся к теории частиц, то увидим, что и здесь мы должны ввести точно такой же принцип, ибо дифракция электронов на кристалле происходит совершенно таким же образом, как дифракция фотонов той же длины волны. Таким образом, и в этом случае интенсивность волны, связанной с электронами, определяет вероятность их локализации в пространстве. Итак, мы приходим к следующему утверждению: квадрат модуля «КСИ»-функции в каждой точке и в каждый момент времени определяет вероятность того, что соответствующая частица будет наблюдаться в этой точке в тот же момент времени.Не следует закрывать глаза на то, сколько изменений вносит подобный постулат в наши представления.
Так как «КСИ»-функция, вообще говоря, отлична от нуля в целой области пространства, то частицу можно найти в любой точке этой области. В данный момент времени частице нельзя приписать точное положение в пространстве. Можно только сказать, что ее можно найти в данной точке с такой-то вероятностью. Вместе с отрицанием понятия строго определенного положения в пространстве исчезают и понятия скорости и траектории. Во всяком случае, они становятся весьма смутными. Вообще все достоверные представления старой механики становятся вероятностными. Здесь мы приоткрыли завесу над важным изменением метода, который наука использует для описания и предсказания явлений природы, изменением, заключающим в себе глубокие философские следствия.
Оставляя за собой право вернуться к этим вопросам в дальнейшем, сформулируем здесь второй принцип, который физики вынуждены принять в их интерпретации волновой теории. Впервые этот второй принцип, насколько нам известно, был сформулирован Борном, когда он начал свое блестящее исследование методами волновой механики задачи о столкновениях частиц. Этот принцип можно назвать принципом спектрального разложения.
Чтобы понять природу этого нового постулата, рассмотрим сначала простой случай частицы, движущейся в отсутствии внешнего поля. Если волна, связанная с частицей, является плоской монохроматической волной, то мы знаем, что энергия частицы строго определена и равна произведению частоты волны на постоянную Планка h. Однако с точки зрения волновой механики «КСИ»-волна не обязательно будет монохроматической. Но ее можно с таким же успехом записать в виде суперпозиции плоских монохроматических волн, образующих волновой пакет. При этом она также будет удовлетворять линейному волновому уравнению. Какова же будет энергия соответствующей частицы в этом случае? Ответить на данный вопрос затруднительно, ибо «КСИ»-волна состоит теперь уже из волн множества различных частот.