Вселенная, жизнь, разум - Иосиф Шкловский
Шрифт:
Интервал:
Закладка:
Гипотеза Джинса в модификации Вулфсона заслуживает внимания. Она, по существу, связывает образование планет с образованием звезд. Последние образуются из межзвездной газопылевой среды группами в так называемых «звездных ассоциациях» (см. гл. 4). В таких группах, как показывают наблюдения, сперва образуются сравнительно массивные звезды, а потом всякая «звездная мелочь», которая эволюционирует в карлики. Это хорошо согласуется с гипотезой Джинса — Вулфсона. Расчеты показывают, однако, что если этот механизм был бы единственной причиной образования планетных систем, то их количество в Галактике было бы весьма мало (одна планетная система, примерно, на 100000 звезд), хотя и не так катастрофически мало, как в первоначальной гипотезе Джинса. По существу, это является единственным уязвимым пунктом современной модификации гипотезы Джинса. Если с достоверностью будет доказано, что около хотя бы некоторых ближайших к нам звезд имеются планетные системы, эта гипотеза будет окончательно похоронена. Похоже на то, что в настоящее время такое доказательство уже имеется (см. предыдущую главу).
Выше мы уже упоминали, что выдающийся советский ученый и общественный деятель О. Ю. Шмидт в 1944 г. предложил свою теорию происхождения Солнечной системы. Согласно О. Ю. Шмидту наша планетная система образовалась из вещества, захваченного из газопылевой туманности, через которую некогда проходило Солнце, уже тогда имевшее почти «современный» вид. При этом никаких трудностей с вращательным моментом планет не возникает, так как первоначальный момент вещества облака может быть сколь угодно большим. Начиная с 1961 г. эту гипотезу развивал английский космогонист Литтлтон, который внес в нее существенные улучшения. Нетрудно видеть, что блок-схема «аккреционной» гипотезы Шмидта — Литтлтона совпадает с блок-схемой «гипотезы захвата» Джинса — Вулфсона. В обоих случаях «почти современное» Солнце сталкивается с более или менее «рыхлым» космическим объектом, захватывая части его вещества. Следует, впрочем, заметить, что для того, чтобы Солнце захватило достаточно много вещества, его скорость по отношению к туманности должна быть очень маленькой, порядка ста метров в секунду.
Если учесть, что скорость внутренних движений элементов облака должна быть не меньше, то, по существу, речь идет о «застрявшем» в облаке Солнце, которое, скорее всего, должно иметь общее с облаком происхождение. Тем самым образование планет связывается с процессом звездообразования. В следующей главе мы рассмотрим гипотезы, в которых планеты и Солнце образовались из единой «солнечной» туманности. По существу, речь пойдет о дальнейшем развитии гипотезы Канта — Лапласа.
10. Вращение звезд и планетная космогония
Прежде чем перейти к изложению современных гипотез, являющихся развитием идей Канта и Лапласа, необходимо остановиться на важной характеристике звезд — их вращении вокруг своих осей. Еще в 1877 г. почти забытый сейчас английский астроном Эбни предложил совершенно правильную идею определения скорости вращения звезд путем спектрографических наблюдений. В самом деле, представим себе звезду, достаточно быстро вращающуюся вокруг оси, составляющей некоторый угол с лучом зрения. Тогда, очевидно, часть поверхности звезды будет двигаться от наблюдателя, часть — к наблюдателю. Вследствие эффекта Доплера все линии в спектре этой звезды будут расширены, так как этот спектр обусловлен излучением всей звезды в целом.
В те времена астроспектроскопия была еще в зачаточном состоянии, и блестящая идея Эбни не могла быть реализована. Положение осложнялось еще тем, что, как показали дальнейшие наблюдения, в спектре одной и той же звезды могут быть как узкие, так и широкие линии. Потребовалось несколько десятилетий, прежде чем астрономы смогли разобраться в многочисленных причинах, приводящих к расширению линий звездных спектров. Оказалось, что ряд явлений в атмосферах звезд (где образуются спектральные линии), не имеющих ничего общего с вращением звезды как целого, по-разному расширяют различные линии. В частности, линии, принадлежащие достаточно распространенным элементам, при соответствующих физических условиях в атмосферах звезд могут быть очень широкими, независимо от вращения звезды.
Только в 1928 г. американский астроном О. Л. Струве и советский астроном Г. А. Шайн решили эту проблему. На рис. 49 (не сканировался) приведены участки спектров трех горячих звезд: ι Геркулеса, η Большой Медведицы и звезды, обозначаемой как HR 2142. Три самые интенсивные линии в этих спектрах принадлежат водороду (крайняя левая) и гелию. Сравнение верхней и средней спектрограмм показывает, что в то время как водородная линия HY выглядит почти одинаково, гелиевые линии на средней спектрограмме заметно шире и не так контрастны, как на верхней. На нижней спектрограмме все линии очень широки и размыты, что делает их почти невидимыми. Истолкование этих спектров простое: на верхней спектрограмме составляющая скорости вращения по лучу зрения близка к нулю (т. е. звезда почти не вращается или же вращается вокруг оси, практически совпадающей с лучом зрения), между тем как средняя спектрограмма указывает на скорость вращения 210 км/с. Так как ширина водородной линии (объясняемая разными причинами, ничего общего с вращением звезды не имеющими) очень велика, то вращение звезды еще не оказывает на нее заметного влияния. Иное дело звезда, спектр которой приведен в нижней части рис. 49. Здесь скорость вращения настолько велика (450 км/с), что все линии в спектре, в том числе и HY, оказываются сильно расширенными и «замытыми».
Подобным методом к настоящему времени исследовано вращение большого количества звезд. Анализ этого обширного наблюдательного материала показал, что скорости вращения звезд вокруг своих осей весьма неодинаковы. Мы видели, что, например, экваториальная скорость вращения Солнца вокруг своей оси всего лишь около 2 км/с, в то время как скорости вращения некоторых звезд превосходят солнечную в 200 раз! Оказалось, что скорости вращения закономерно связаны со спектральным классом звезд. Быстрее всего вращаются массивные звезды классов O и B, практически не вращаются желтые и красные карлики. В табл. 3 приведены данные о скоростях вращения звезд различных спектральных классов.
Обращает на себя внимание следующее обстоятельство: где-то вблизи спектрального класса F5 (температура поверхности звезд этого класса около 6 тыс. К) скорость вращения резко, почти скачком уменьшается. В то время как звезды более «ранних» спектральных классов вращаются с экваториальной скоростью, как правило, превышающей 100 км/с, карлики спектральных классов G, K, M практически не вращаются. Последнее обстоятельство доказано самыми тщательными спектрографическими наблюдениями.
Возникает основной вопрос: почему такая характеристика звезд, как вращение, изменяется не плавно вдоль главной последовательности звезд, а скачком, вблизи спектрального класса F5? Ведь другие основные характеристики, как, например, спектральный класс, светимость, температура поверхности, меняются вдоль главной последовательности звезд непрерывно. Чтобы попытаться ответить на этот важный вопрос, рассмотрим следующий мысленный эксперимент. Что было бы, если бы все планеты Солнечной системы слились с Солнцем? Так как в изолированной системе момент количества движения должен сохраниться, а масса всех планет ничтожно мала по сравнению с массой Солнца, то Солнце с необходимостью должно было бы вращаться с экваториальной скоростью, в 50 раз большей, чем сейчас (так как его вращательный момент должен был бы увеличиться с 2 до 100 % полного момента количества движения Солнечной системы). Следовательно, экваториальная скорость вращения Солнца стала бы близкой к 100 км/с. Но это как раз нормальная скорость вращения звезд, более массивных и горячих, чем F5. Напрашивается важный вывод: скорость вращения Солнца, которая когда-то была довольно высокой, резко уменьшается (в 50 раз) благодаря тому, что основная часть момента количества движения была передана планетам.
Мы можем считать, что не горячие звезды аномально быстро вращаются, а наоборот, холодные карликовые звезды почему-то очень медленно вращаются. По аналогии с Солнцем следует как бы напрашивающийся вывод: причина медленного вращения звезд главной последовательности, начиная со спектрального класса F5 и более поздних, — наличие вокруг них планетных систем, по какой-то пока неизвестной причине «вобравших» в себя большую часть первоначального момента того сгустка вещества, из которого сформировались звезды и планеты.
Мыслимы по крайней мере два механизма «перекачки» момента от центральной звезды к планетам. Первый такой механизм был предложен известным шведским физиком и астрономом Альвеном, который обратил внимание на то, что роль «передаточного ремня» может выполнять магнитное поле. Развитие идеи Альвена содержится в космогонической гипотезе английского астрофизика Хойла, выдвинутой в 1958 г.