Категории
Самые читаемые

Клеймо создателя - Феликс Филатов

Читать онлайн Клеймо создателя - Феликс Филатов

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 35 36 37 38 39 40 41 42 43 ... 50
Перейти на страницу:

Менее прицельные эксперименты, начатые еще алхимиками с целью получить гомункулюса (маленького человечка) в колбе, продолженные знаменитой попыткой Юри и Миллера, получивших в колбе соединения, из которых мог бы такой гомункулюс состоять, продолжаются и сейчас, обновляемые введением в систему дополнительных параметров, предполагаемых на ранней Земле. В самом общем виде об экспериментах этого рода мы уже говорили. Очень похоже, что их задача может быть выполнена только если в колбе будут аккумулированы все начальные параметры. Между тем, по крайней мере, три из них до сих пор в этой работе не предусматривались. Первый – это воспроизведение не столько мыслимых на сегодня благоприятных условий для возникновения жизни, сколько их бесконечного разнообразия в замкнутом пространстве лабораторной колбы. Вряд ли молекулярные процессы, которые привели к возникновению жизни (генетического кода), происходили в единственном пузырьке, вмещающем несколько сотен или тысяч или даже миллионов молекул. Вероятнее, таких пространств-пузырьков было множество – в одних формировались различные варианты гиперциклов Эйгена, в других происходили отдельные события, моделируемые более прицельными экспериментами; позднее эти пузырьки объединялись в самых различных вариантах – пока не случилась комбинация, имевшая эволюционную перспективу.

Второй, не использованный до сих пор в таких экспериментах параметр – это время, то есть, миллиард лет напряженной работы. Классический эксперимент Стенли Миллера (1952г) длился неделю и показал наличие в реторте 5 аминокислот. Миллер повторил свой эксперимент в 1958г, добавив в исходную смесь сероводород, в избытке содержащийся в продуктах вулканических извержений. Часть образцов он оставил нетронутыми. Спустя полвека Джеффри Бада из Института океанологии Калифорнийского университета в Сан-Диего проанализировал эти образцы и обнаружил в них ещѐ и серусодержащие аминокислоты, которые были продуктами реакции, а не результатом жизнедеятельности контаминирующих бактерий. В определенной степени, это, конечно, результат применения современных методов анализа, неизвестных во времена Миллера. А если бы и сам эксперимент длился 50 лет? А если бы он длился ту же неделю – но в библейском исчислении, в котором один день – это два миллиарда лет? Прицельными экспериментами – с небольшим числом рационально подобранных компонентов – мы пробуем сократить необходимое для эксперимента время, но пока неясно даже, двигаемся ли мы в правильном направлении.

Наконец, третий параметр – это ввод в систему гравитационного ритмоводителя, не слишком понятную роль которого (облигатную или факультативную – неизвестно) в природе играет Луна. Собственно, весь этот «эксперимент» уже поставлен (правда, не нами), мы – его отдаленный (хотя, возможно, и не конечный) результат.

В настоящее время одними из наиболее интересных экспериментов первой группы, целью которых является выяснение конкретных молекулярных механизмов формирования генетического кода, являются эксперименты с так называемыми аптамерами, небольшими молекулами РНК или одноцепочечных ДНК, структура которых (выясняемая опытным путем) делает их высокоаффинными специфическими лигандами по отношению к молекулам изучаемого вещества. Аптамеры, используемые для исследования происхождения генетического кода, отличаются определенным, пусть и не слишком сильным, стереохимическим сродством с аминокислотами. Такие аптамеры отбираются из комбинаторных библиотек РНК-олигонуклеотидов специальными методами (SELEX-методы от англ. Systematic Evolution of Ligandsby Exponential Enrichment), суть которых заключается в каскадном обогащении отдельных компонентов этих библиотек, отбираемых на сорбентах, с последующим секвенированием сконцентрированного и очищенного продукта.

Почему аптамеры так привлекательны? Во-первых, потому, что тРНК – по крайней мере, для десяти аминокислот – узнается соответствующей АРСазой и присоединяет специфическую аминокислоту даже если эту тРНК «обрезать» до размера акцепторной мини-спирали (иногда и короче), содержащей ССА-3» -конец67

И наоборот: «обрезанная» молекула АРСазы (в некоторых случаях – обрезанная таким образом, что она «не достает» до антикодона) сохраняет тРНК-специфичность. Эти поразительные наблюдения привели исследователей6 к мысли о существовании особого, «операционального» кода, который определяет самостоятельное узнавание молекулами АРСаз «своих» тРНК по последовательностям акцепторного стебля в районе «посадки» аминокислоты.

Во-вторых, оказалось, что определенные аминокислоты (не все) обладают выраженным сродством к некоторым РНК-аптамерам – в частности, к таким, которые содержат кодоны и антикодоны, узнающие эти аминокислоты в соответствии с современным генетическим кодом. Исследователи отмечают независимость такого сродства от механизмов трансляции, так что жизнь в принципе могла его использовать и до формирования этих механизмов. Последующие адаптации привели, в конечном счете, к возникновению известной сегодня трансляции, основными компонентами которой являются тРНК и АРСазы. И если ранние АРСазы имели, скорее всего, РНК-природу, то гипотетический претрансляционный операциональный код мог быть использован для сборки первых аминокислотных последовательностей – пептидов, способных по эффективности полезных функций выигрывать соперничество с ферментами РНК-мира. Не факт, что этот примордиальный код был даже триплетным. Выяснилось, в-третьих, что сродство аминокислот с аптамерами определяется наличием в составе последних, скорее, антикодонных, нежели кодонных участков.

Гипотеза Сергея и Александра Родиных68 предполагает, что на ранних этапах операциональный код был ориентирован на РНК-последовательности, ставшие позднее акцепторным стеблем тРНК. Он кодировал четыре-шесть аминокислот; постепенно этот набор обогащался, расширяясь по флангам, пока из первичного кода не выделился тот строгий вариант, который мы сегодня и называем универсальным генетическим. Не слишком, но все же заметная регулярность структуры тРНК, навела этих исследователей на забавную мысль о поэтапной эволюции молекулы тРНК в результате последовательного удлинения (по схеме Фибоначчи) двух исходных компонентов – антикодонного триплета (основания) и «хвоста» молекулы 5`-DCCA-3` (основания), где D—неспаренный нуклеотидный детерминатор (73-й нуклеотид; обычно это пурин – А, реже G); «хвоста», к которому прикрепляется аминокислота: 3,4,7,11,18,29,47,76. Шестая итерация привела к числу, соответствующему «стандартной» длине тРНК. Близки к этой гипотезе соображения Деларю69, который предположил существование каскадного двоичного механизма узнавания АРСазой «своей» тРНК – начиная со второй буквы кодона. Здесь нет необходимости вдаваться в детали, тем более, что молекулярный механизм каскадов Деларю остается неясным.

Так или иначе, рибозим, осуществлявший в машине первичного кодирования функцию АРСазы, неизбежно должен был обладать и матричными свойствами, которые позднее – при замене рибо-АРСаз на белковые – могли участвовать в формировании пар кодон-антикодон. При этом эволюция не делила цепи РНК на кодирующую (смысловую) и некодирующую (анти-смысловую): первоначально обе они были кодирующими, что еще в 1979г предположили Эйген и Шустер. Именно такая симметрия могла развести будущие белковые АРСазы на два класса, которые, в свою очередь, придали ацилируемым аминокислотам их взаимную групповую симметрию. С определенными оговорками эта симметрия нашла свое выражение в одной из модифицированных таблиц генетического кода, которую предложили Родины, назвав ее неслучайной. Мы не приводим ее здесь, поскольку симметрия тех таблиц кода, которые мы уже описали (в первую очередь, матрицы), представляется более выраженной – также, как их оцифровка. Матрица указывает, в том числе, на вторую букву кодирующего триплета как на детерминатор гидрофобности (гидрофильности) кодируемой аминокислоты, в то время, как первая его буква (в меньшей степени третья) определяет ее массу.

Длительная и кропотливая экспериментальная работа, поиск едва заметных следов, отмечавших происхождение и историю генетического кода, всѐ это почти детективное расследование природы генетического кодирования буквально завораживает интеллект современного биолога, «траченного», несмотря на все предостережения, почти лапласовским детерминизмом и механистическим мышлением, неизбежными знаками времени. Биология долго ещѐ будет исследовать «молекулярные машины» трансляции, репликации и кодирования, «механизмы» зрения, свертывания крови и т. п., не отдавая себе отчета в том, что ее предмет находится в полушаге от квантового мира, «механика» которого – никакая не механика, а детерминизм для которого – противоестествен. Но эти исследования постепенно обогащают наши знания и рождают новые увлекательные гипотезы и предположения. В этом описанные выше числовые особенности генетического кода, однажды обнаруженные, но не обогащенные пока пошаговой экспериментальной работой (требующей намного большего масштаба), казалось бы, уступают молекулярным исследованиям. Такая работа, однако, впереди.

1 ... 35 36 37 38 39 40 41 42 43 ... 50
Перейти на страницу:
На этой странице вы можете бесплатно читать книгу Клеймо создателя - Феликс Филатов.
Комментарии