Психофизиология. Психологическая физиология с основами физиологической психологии. Учебник - Елена Николаева
Шрифт:
Интервал:
Закладка:
Вегетативная нервная система состоит из двух анатомически обособленных систем, являющихся функциональными антагонистами – симпатической и парасимпатической (рис. 1.6). В отличие от соматической нервной системы, имеющей однонейронный путь, пути в вегетативной нервной системе являются двухнейронными. Волокна симпатической нервной системы выходят из грудного и поясничного отделов спинного мозга, где лежит первый симпатический нейрон. Затем они сходятся к симпатическим ганглиям, расположенным вдоль позвоночника, где находится второй симпатический нейрон (рис. 1.6).
Волокна парасимпатической нервной системы начинаются в спинном мозге выше или ниже места выхода симпатических нервов (пара – около, лат.) из черепного и крестцового отдела, а затем сходятся в ганглиях, расположенных не вдоль позвоночного столба, а вблизи от иннервируемого органа (рис. 1.6).
Рис. 1.6. Автономная нервная система и органы, иннервируемые ею (Carlson, 1992).
Особенности расположения ганглиев этих двух систем предполагают различие оказываемого ими эффекта. Действие симпатической нервной системы более диффузно, а парасимпатической – более специфично, поскольку связано только с изменениями в органе, рядом с которым находится ганглий. Эти системы различаются и медиаторами, участвующими в синаптической передаче. Основным медиатором для симпатической нервной системы является адреналин, а для парасимпатической – ацетилхолин.
Результаты активности этих двух систем во многом противоположны. Если основная функция симпатической нервной системы состоит в мобилизации организма на борьбу или бегство, то парасимпатическая нервная система преимущественно обеспечивает поддержание гомеостаза. Активация симпатической нервной системы лежит в основе поведения человека, рвущегося в бой. Возбуждение парасимпатической нервной системы обеспечивает пищеварение у человека, лежащего на диване после сытного обеда (вспомните тест Александра Македонского с горящим факелом, описанный во введении).
Симпатическая нервная система возбуждает, а парасимпатическая – тормозит деятельность сердца, первая ослабляет двигательную активность кишечника, вторая ее усиливает. В то же время они могут действовать и заодно: вместе увеличивают двигательную активность слюнных и желудочных желез, хотя состав секретируемого сока в зависимости от доли участия каждой системы меняется. В табл. 1.2 представлены эти различия в результатах деятельности симпатической и парасимпатической нервных систем.
Симпатическая и парасимпатическая системы возникли в эволюции не одновременно. Известно, что у миксин и миног (ранних представителей позвоночных) парасимпатическая система развита достаточно хорошо, но у них отсутствуют даже зачатки симпатической нервной системы. Полного своего развития симпатическая нервная система достигает только у амфибий (Родионов, 1996).
Таблица 1.2.
Особенности симпатической и парасимпатической нервной системы (Бабский и др., 1979).
Первичность парасимпатической нервной системы по отношению к симпатической обнаруживается еще и в том, что при экспериментальном удалении парасимпатической иннервации все ее функции практически перестают выявляться, тогда как при устранении симпатических влияний ни одна из функций не выпадает полностью, поскольку возникает компенсация за счет корковых воздействий на них.
В начале двадцатого века Уолтер Кеннон проводил обширные исследования симпатического отдела вегетативной нервной системы. С тех пор считается, что симпатическая нервная система расширяет диапазон выносливости организма при экстремальных воздействиях, а функционирование организма на базовом уровне обеспечивается парасимпатической нервной системой.
Итак, особенностями функционирования вегетативной нервной системы являются реципрокное взаимодействие ее компонентов (парасимпатического и симпатического), параллельное существование нескольких путей обеспечения функций (отсутствие единого центра), зависимость характера ее реакции от исходного состояния человека, нейрохимическая гетерогенность.
Центральными структурами, включенными в регуляцию активности периферических звеньев вегетативной нервной системы, являются ряд областей переднего, промежуточного мозга и мозгового ствола, которые контролируют преганглионарные симпатические и парасимпатические волокна. К важнейшим ее компонентам относятся инсуларная и медиальная префронтальная кора, центральные ядра миндалины и задние ядра конечной полоски, гипоталамус, околоводопроводное серое вещество мозгового ствола, парабрахиальный регион моста, ядра одиночного тракта, промежуточная ретикулрная медуллярная зона и вентролатеральная медула (Чуприков, Палиенко, 2004).
Клетки мозга
Особенностью живого организма является использование короткоживущих материалов для построения долгоживущих систем. Решение этой на первый взгляд неразрешимой задачи найдено в постоянном обновлении организма. Каждая клетка, каждый орган в нем находятся в состоянии хронического «ремонта», во время которого старые молекулы заменяются новыми. В результате этого структура в целом (например, клетка) живет многие годы, тогда как молекулы вновь и вновь сменяются новыми. Особенно интенсивны эти процессы в мозге, который обновляется на 80 % всего лишь за две недели.
Ведущее значение в деятельности любой клетки принадлежит мембране. В особой мере это относится к нервной системе. В организме человека ее функциями являются интеграция и коммуникация. Эти функции осуществляются через мембрану: прохождение нервного импульса вдоль аксона, приводящее к возникновению потенциала действия за счет переноса ионов через аксональную мембрану; передача информации от одной клетки к другой представляет собой химические и электрические явления на синаптической мембране; гормональная регуляция связана с восприятием управляющих сигналов – гормонов – через синаптические рецепторы на мембране (Хухо, 1990). Толщина ее составляет в среднем 8 нанометров (нм), что меньше чем 0,00001 мм. В 1934 г. исследователи Дж. Даниэли и Й. Даусон предложили модель, согласно которой клеточная мембрана выглядела как сэндвич (разрезанная булка с маслом внутри). Наружные слои модели составляли белки, а внутри «сэндвича» помещались фосфолипиды (сложные жироподобные молекулы) (Климов, Никульчева, 1995).
Современное представление о структуре мембраны введено С. Зингером и Г. Николсоном, предложившими жидкомозаичную модель мембраны (Singer, Nicolson, 1972). Согласно их гипотезе белки мембраны погружены в гель из двойного слоя фосфолипидов. Эти молекулы имеют два конца, из которых один растворим в воде, а другой нет. Фосфолипиды двух слоев повернуты друг к другу своими нерастворимыми в воде концами (рис. 1.7). Молекулы фосфолипидов, находясь в жидком кристаллическом состоянии, подвижны и могут проникать из слоя в слой (так называемая «флип-флоп диффузия»; flip – щелчок, flop – шлепок, англ.) или меняться местами с соседями (латеральная диффузия). У бактерий одна молекула фосфолипидов завершает полный цикл движения вокруг клетки примерно за 1 сек. – нетрудно представить себе подвижность живой клетки и ее частей (Климов, Никульчева, 1995). Жидкомозаичная модель клеточной мембраны – не более чем модель. Это значит, что она является рабочей гипотезой, в настоящее время наиболее адекватно описывающей мембрану. Любой хорошо запланированный эксперимент может ее изменить или даже отвергнуть (Хухо, 1990). В этом учебнике достаточно часто будет встречаться описание моделей, поэтому следует всегда помнить об относительной надежности этих описаний.
Рис. 1.7. Строение мембраны нейрона (Kalat, 1992).
В каждой клетке тела, кроме клеток крови и генеративных клеток, набор генов одинаков. Однако все разнообразие функционирования клеток определяется набором экспрессирующихся генов (находящихся в активном состоянии, при котором синтезируется продукт, кодируемый данным геном). В каждой клетке эти работающие гены составляют лишь небольшую часть генома. В мозге избирательная генная экспрессия обнаружена в амакриновых клетках в сетчатке, клетках Пуркинье в мозжечке, мотонейронах в спинном мозге.
В процессах метаболизма универсальным источником питания мозговой ткани служит глюкоза. Независимо от того, поступила ли она из кишечника или образовалась в печени, глюкоза с током крови попадает во все ткани организма и используется ими для формирования богатых энергией связей, а также как первичный предшественник углеводов. В клетку глюкозу переносит белок, погруженный в клеточную мембрану. Пять форм такого белка уже достаточно хорошо изучены.