Категории
Самые читаемые
onlinekniga.com » Документальные книги » Биографии и Мемуары » В плену у чисел - Давид Фаермарк

В плену у чисел - Давид Фаермарк

Читать онлайн В плену у чисел - Давид Фаермарк

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 2 3 4 5 6
Перейти на страницу:

Один из творцов аналитической геометрии, теории вероятностей и теории чисел, известный французский математик Пьер Ферма в 1639 году высказал предположение о том, что числа вида 22n+1 являются простыми при любых целых неотрицательных значениях «n», то есть эта формула — как бы «генератор» простых чисел. На самом деле, при n=0 мы получаем просто число 3, при n=1 — простое число 5, при n=2 — простое число 17, при n=3 — простое число 257, при n=4 — простое число 65537. Ферма утверждал, что и при любых других натуральных значениях «n» «генератор» будет давать только простые числа. При n=5 он получил число 4294967297. Ученый был убежден, что и это число простое, но доказать свое предположение он не смог. Только в 1733 году, то есть через 94 года после того, как Ферма высказал свое предположение, выдающийся русский математик, академик Леонард Эйлер доказал, что при n=5 «генератор» Ферма не срабатывает, получившееся число — составное. Ферма ошибся. Может быть, это единственная осечка «генератора», — подумали ученые (авторитет Ферма был достаточно высок). Нет, не единственная.

Прошло почти 150 лет после открытия Эйлера, и математиков мира поразила новость. «Генератор» Ферма не срабатывал также и при n=12 и при n=23. На этот раз покой математиков нарушил безвестный священник из уральского села Замараевского Иван Михеевич Первушин. Этот упрямый человек решил задачу, над решением которой ломали голову известнейшие математики, задачу, которую не смог решить великий Ферма.

В ноябре 1877 года вице-президент Петербургской Академии наук, известный математик Виктор Яковлевич Буняковский получил письмо, в котором далекий уральский корреспондент сообщал: 2212+1 — составное и один из делителей его равен 114689. А позже тот же корреспондент сообщил Буняковскому, что и число 2223+1 тоже составное и один из делителей его равен 167772161. Проверку делимости первого числа Первушина провел сам Буняковский, второго — профессор Егор Иванович Золотарев. Стало ясно: Первушин прав. Сенсация! Академик В. Я. Буняковский в донесении в отделение физико-математических наук Академии по поводу первой записки Первушина сказал: «По моему мнению, факт о новом случае делимости чисел вида 22n+1 не лишен научного интереса для занимающихся теорией чисел и, желательно, чтоб он получил гласность». Академия поручила Буняковскому составить заметку. Что он и сделал. Эта заметка была опубликована на русском языке в «Записках Академии» и на французском языке в «Бюллетене Академии наук». Заметки были опубликованы вовремя, ибо через два месяца в записках Туринской Академии наук Италии была опубликована статья французского математика Э. Люка, в которой он приводит этот же случай делимости. Приоритет Первушина не вызывал сомнения. Наконец, о математике с Урала заговорили в академических кругах как о крупном даровании, как о человеке фантастического трудолюбия. Сколько сил и времени надо было затратить, доказывая делимость этих чисел! Чтобы хоть немного почувствовать это — достаточно знать, что в числе 2223+1 2525223 цифры.

Только одержимый человек мог оперировать такими громадными числами и добиваться при этом выдающихся успехов!

Первушина влекли и совершенные числа.

Если сложить все делители натурального числа, но не равные этому числу, то эта сумма в одном случае будет меньше самого числа, а в другом — больше. Например, сумма делителей числа 8 равна 1+2+4=7, то есть меньше 8, а сумма делителей числа 12 равна 1+2+3+4+6=16, то есть больше 12. Естественно, возникает вопрос о существовании таких чисел, сумма делителей которых равнялась бы этим числам. Такие числа есть. И называются они совершенными.

Еще в Древней Греции знали совершенные числа 6 (1+2+3=6) и 28 (1+2+4+7+14=28). Известный древнегреческий математик Евклид нашел еще два совершенных числа 496 и 8128. Прошло 17 веков, и только в 1460 году было найдено пятое совершенное число — 33550336. В шестнадцатом веке были найдены шестое и седьмое совершенные числа. В 18 веке Леонард Эйлер нашел восьмое совершенное число. Вот оно: 2 305 843 008 139 952 128. Прав был древнегреческий математик Никомах Герасский, который, рассуждая о совершенных числах, писал: «Совершенные числа красивы. Но известно, что красивые вещи редки и немногочисленны, безобразные же встречаются в изобилии».

Прошло более ста лет после того, как Эйлер нашел восьмое совершенное число. 27 октября 1883 года вице-президент Петербургской Академии наук академик В. Я. Буняковский получил очередную корреспонденцию от уральского математика. На этот раз Первушин сообщил, что нашел девятое совершенное число. Это число громадно и содержит 37 цифр. Для этого пришлось ему доказать, что число 261–1 — простое. Оно равно 2 305 843 009 213 693 951. Долгое время это было самым большим из известных простых чисел. В математике это число в честь первооткрывателя названо Числом Первушина. Уму непостижимо, как мог он «вручную» найти гигантское число. Выдающийся французский математик друг Декарта и Ферма, один из основателей Парижской Академии наук Марен Мерсенн говорил, что вечности не хватит для проверки простоты числа, имеющего 15–20 десятичных знаков. А в числе Первушина их 37!

Советский историк математики профессор И. Я. Депман так сказал по этому поводу: «И. М. Первушин, вычислив девятое совершенное число, поистине совершил настоящий подвиг».

Получив письмо Первушина, петербургские академики растерялись. Уральский математик, как всегда, сообщал им только результат своих вычислений без каких-либо выкладок и объяснений, а проверить результат никто не решался. Академик Буняковский просил Первушина сообщить, каким методом получил он результаты. Буняковский предложил Первушину объединить разрозненные записки в монографии, где были бы изложены не только результаты, но и доказательства в доступной форме. Но Первушин, по-видимому, был другого мнения. Несмотря на то, что сам писал: «Дорога не только сама истина, но и дорога к ней», он почему-то никогда не показывал эту дорогу. Он не рассказывал никому, как добивался своих выдающихся результатов. Может быть, ему мешала на высоком научном уровне изложить свои выкладки недостаточная математическая подготовка? Первушин достиг выдающихся математических результатов благодаря математической интуиции. Вот факт. Предлагая казанскому математическому обществу решить какую-то задачу по теории чисел, Иван Михеевич писал: «Обществу не угодно ли будет взять на себя труд вышеозначенную задачу решить теоретически прежде, чем я ее решу через 20 лет практически». В этих словах, как нам кажется, весь Первушин как математик.

Когда академик Буняковский доложил ученому совету об открытии Первушина, то это сообщение было запротоколировано. В 1887 году немецкий математик Зеелъхоф опубликовал доказательство простоты чисел 261–1, тогда Петербургская Академия наук напечатала протоколы заседаний за 1883 год. Право первенства открытия осталось за Первушиным.

(adsbygoogle = window.adsbygoogle || []).push({});
1 2 3 4 5 6
Перейти на страницу:
На этой странице вы можете бесплатно читать книгу В плену у чисел - Давид Фаермарк.
Комментарии