Категории
Самые читаемые
onlinekniga.com » Научные и научно-популярные книги » Физика » 8a. Квантовая механика I - Ричард Фейнман

8a. Квантовая механика I - Ричард Фейнман

Читать онлайн 8a. Квантовая механика I - Ричард Фейнман

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 2 3 4 5 6 7 8 9 10 ... 28
Перейти на страницу:

Вы видите, что это похоже на (7.9), но появился добавочный член от электрического поля. Равным образом, вычитая урав­нения (7.36), получаем

Вопрос теперь в том, как решить эти уравнения. Это труд­нее, чем прежде, потому что x зависит от t; и действительно, при общем x (t)решение не представимо в элементарных функ­циях. Однако, пока электрическое поле мало, можно добиться хорошего приближения. Сперва напишем

Если бы электрического поля не было, то, беря в качестве gI и gII две комплексные постоянные, мы бы получили пра­вильное решение. Ведь поскольку вероятность быть в состоя­нии |/ > есть квадрат модуля CI, а вероятность быть в состоя­нии |II> есть квадрат модуля СII, то вероятность быть в со­стоянии |I>или в состоянии |II> равна просто |gI|2 или |gII|2. Например, если бы система начинала развиваться из состояния |II> так, что gI было бы нулем, a |gII|2— единицей, то эти условия сохранились бы навсегда. Молекула из состояния |II> никогда бы не перешла в состояние |I>.

Польза записи решений в форме (7.40) состоит в том, что оно сохраняет свой вид и тогда, когда есть электрическое поле, если только mx меньше А, только gI и gII при этом станут мед­ленно меняющимися функциями времени. «Медленно меняю­щиеся» означает медленно в сравнении с экспоненциальными функциями. В этом весь фокус. Для получения приближен­ного решения используется тот факт, что gI и gII меняются медленно.

Подставим теперь СIиз (7.40) в дифференциальное уравне­ние (7,39), но вспомним, что gI тоже зависит от t. Имеем

Дифференциальное уравнение обращается в

Равным образом уравнение для dCII/dt обращается в

Обратите теперь внимание, что в обеих частях каждого урав­нения имеются одинаковые члены. Сократим их и умножим первое уравнение на

а второе на

. Вспоминая, что (EI- eii)=2А=hw0, мы в конце концов получаем

Получилась довольно простая пара уравнений — и пока еще точная. Производная от одной переменной есть функция от времени, умноженная на вторую переменную; про­изводная от второй — такая же функция от времени, умножен­ная на первую. Хотя эти простые уравнения в общем не реша­ются, но в некоторых частных случаях мы решим их.

Нас, по крайней мере сейчас, интересует только случай ко­леблющегося электрического поля. Взяв x(t) в форме (7.37), мы увидим, что уравнения для gI и gIIобратятся в

(it

И вот если x0достаточно мало, то скорости изменения gI и gIIтоже будут малы. Обе у не будут сильно меняться с t, особен­но в сравнении с быстрыми вариациями, вызываемыми экспо­ненциальными членами. У этих экспоненциальных членов есть вещественные и мнимые части, которые колеблются с частотой w+w0 или w-w0. Члены с частотой w+w0 колеблются вокруг среднего значения (нуля) очень быстро и поэтому не дадут сильного вклада в скорость изменения g. Значит, можно сде­лать весьма разумное приближение, заменив эти члены их средним значением, т. е. нулем. Их просто убирают и в каче­стве приближения берут

Но даже и оставшиеся члены с показателями, пропорциональ­ными (w-w0), меняются быстро, если только w не близко к w0. Только тогда правая сторона будет меняться достаточно мед­ленно для того, чтобы набежало большое число, пока интег­рируешь эти уравнения по t. Иными словами, при слабом электрическом поле изо всех частот представляют важность лишь те, которые близки к w0.

При тех приближениях, которые были сделаны для того, чтобы получить (7.45), эти уравнения можно решить и точно; но работа эта все же трудоемкая, и мы отложим ее на другое время, когда обратимся к другой задаче того же типа. Пока же мы их просто решим приближенно, или, лучше сказать, найдем точное решение для случая идеального резонанса w=w0 и приближенное — для частот близ резонанса.

§ 4. Нереходы при резонансе

Первым рассмотрим случай идеального резонанса. Если положить w=w0, то экспоненты в обоих уравнениях (7.45) станут равными единице, и мы просто получим

Если из этих уравнений исключить сперва gI, а потом gII, то мы увидим, что каждое из них удовлетворяет дифференциаль­ному уравнению простого гармонического движения

Общее решение этих уравнений может быть составлено из сину­сов и косинусов. Легко проверить, что решениями являются следующие выражения:

где а и b — константы, которые надо еще определить так, чтобы они укладывались в ту или иную физическую ситуацию.

К примеру, предположим, что при t=0 наша молекулярная система была в верхнем энергетическом состоянии |I>, а это требует [из уравнения (7.40)], чтобы gI=1 и gII=0 при t=0. Для такого случая должно быть а=1 и b=0. Вероятность того, что молекула окажется в том же состоянии |I> в какой-то позднейший момент t, равна квадрату модуля gI, или

Точно так же и вероятность того, что молекула окажется в состоянии |II>, дается квадратом модуля gII:

Пока x мало и пока мы находимся в резонансе, вероятности даются простыми колебательными функциями. Вероятность быть в состоянии |I> падает от единицы до нуля и возрастает опять, а вероятность быть в состоянии |II> растет от нуля до единицы и наоборот. Изменение обеих вероятностей во времени показано на фиг. 7.5.

Фиг. 7.5. Вероятности обоих состояний моле­кулы аммиака в синусоидальном электрическом поле.

Нечего и говорить, что сумма обеих вероятностей всегда равна единице; ведь молекула всегда на­ходится в каком-то состоянии.

Положим, что прохождение через полость занимает у мо­лекулы время Т. Если сделать полость как раз такой длины, чтобы было mx0Т/h=p/2, то молекула, ныряющая в нее в состоянии |I>, наверняка вынырнет из нее в состоянии |II>. Если она вошла в полость в верхнем состоянии, то выйдет из полости в нижнем. Иными словами, ее энергия упадет, и эта потеря энергии не сможет перейти ни во что другое, а только в механизм, который генерирует поле. Детали, которые по­могли бы вам разглядеть, как именно энергией молекулы питаются колебания полости, не так уж просты; однако нам и не нужно все эти детали изучать, потому что имеется принцип сохранения энергии. (Мы могли бы, если бы это было нужно, изучить их, но тогда нам пришлось бы иметь дело с квантовой механикой поля в полости наряду с квантовой механикой атома.)

Подытожим. Молекула входит в полость, поле полости, колеблющееся с как раз нужной частотой, индуцирует перехо­ды с верхнего состояния на нижнее, и высвобождаемой энергией питается осциллирующее поле. В работающий мазер молекулы доставляют достаточно энергии для того, чтобы поддержива­лись колебания полости, ее хватает не только на то, чтобы воз­местить потери в полости, но и на то, чтобы небольшие избытки энергии извлекались из полости. Итак, молекулярная энергия превращается в энергию внешнего электромагнитного поля.

Вспомним, что перед входом в полость нам приходилось пользоваться фильтром, который разделял пучок так, что в полость входило только верхнее состояние. Легко показать, что, если бы мы начали с молекул в нижнем состоянии, процесс пошел бы в другую сторону и энергия от полости отбиралась бы. Если пустить в полость нефильтрованный пучок, то сколько молекул будет отбирать энергию от полости, столько же из них будет отдавать ей свою энергию, и в итоге ничего не случится. В настоящем мазере, конечно, не обязательно делать (mx0T/h) точно равным p/2. И при других значениях (кроме точных кратных p) существует какая-то вероятность переходов из состояния |I> в состояние |II>. Но при этих других значе­ниях прибор уже не имеет к. п. д., равного 100%; многие из молекул, покидающие полость, могли бы снабдить ее энергией, но не сделали этого.

1 2 3 4 5 6 7 8 9 10 ... 28
Перейти на страницу:
На этой странице вы можете бесплатно читать книгу 8a. Квантовая механика I - Ричард Фейнман.
Комментарии