Энергия будущего - Александр Проценко
Шрифт:
Интервал:
Закладка:
Невыгодно пока строить АЭС для полупиковых и тем более пиковых нагрузок. Значит, нужно научиться преобразовывать атомную энергию не только в электричество, но и в другие виды энергии. В какие же именно?
Давайте вспомним, на какие нужды расходуется добываемое в стране топливо. Мы уже говорили, что только пятая часть его уходит на производство электроэнергии. Столько же потребляет автомобильный, авиационный, морской и речной транспорт. Примерно столько же расходуется на различные высокотемпературные технологические процессы в металлургии, химии, нефтехимии, производстве строительных материалов. Самая большая доля топлива - около 30-35 процентов - приходится на производство горячей воды и пара. Наконец, около пяти-шести процентов топлива используется в виде химического сырья.
Итак, баланс ясен. Каков же следующий плацдарм в энергетике, который должна занять атомная энергия?
При его выборе должно быть учтено, что наиболее эффективно атомная энергия может быть использована там, где заменит собой дорогостоящие, становящиеся все более дефицитными нефть и газ. Следующий шаг - вероятно, использование энергии атома в теплоснабжении. Атомная энергетика уже подготовлена к тому, чтобы обеспечивать теплом жилища и коммунальные предприятия. Казалось бы, к чему тут ей готовиться? Она производит уже сейчас горячую воду и пар гораздо более высоких параметров, чем это необходимо для теплофикации! Все это так. Однако горячую воду, а тем более пар невозможно передавать на большое расстояние, так как будут велики потери тепла и дорого будут стоить теплотрассы. Значит, атомный источник тепла должен находиться вблизи от потребителей, жилых массивов и коммунальных предприятий. Правда, требования к безопасности такой станции существенно возрастают.
Но директор отделения ядерных реакторов Института атомной энергии, автор монографии, посвященной безопасности АЭС, В. Сидоренко говорит, что уже разработан проект подобной атомной станции теплоснабжения (ACT), которая удовлетворит самым придирчивым требованиям. Она не причинит вреда окружающему населению даже в случае такой практически невозможной аварии, как разрыв корпуса реактора. Вторичная оболочка, охватывающая корпус, предотвратит выброс вредных веществ. Сейчас первые ACT сооружаются в Горьком и Воронеже. В дальнейшем возможно сооружение и АТЭЦ, то есть атомных энергетических установок, одновременно вырабатывающих и электроэнергию, и бытовое и коммунальное тепло.
Применение ядерных реакторов для теплофикации позволит решить одну из основных задач сегодняшней и тем более будущей энергетики - экономия и постепенная замена нефти и газа другими источниками энергии.
К сожалению, по ряду причин еще ограничены масштабы использования атомных реакторов, производящих горячую воду и пар. Они экономичны лишь при довольно большой мощности, не меньшей, чем 400-500 тысяч киловатт. А такую нагрузку не всегда удается им подобрать. Во многих районах страны потребители тепла слабо сконцентрированы, и к ним нужно тянуть очень длинные теплотрассы. При этом атомные установки становятся невыгодными, особенно когда дело касается снабжения потребителей паром, транспорт которого на большие расстояния и вовсе затруднителен.
Конечно, сейчас очень много районов с такой концентрацией тепловых нагрузок, при которых ACT эффективны. Но тем не менее важна и задача обеспечения теплом рассредоточенных потребителей, например сельскохозяйственных. Задачу обеспечения промышленных предприятий паром от атомных реакторов хотелось бы видеть решенной уже сейчас. Какие пути ведут к этому?
Связаны они с развитием высокотемпературной атомной энергетики. Многочисленные предприятия металлургической, химической промышленности нуждаются в тепле при температуре 500-1000 градусов. Производство восстановительных газов, используемых при получении железа из руды, преобразование природного газа в аммиак, производство удобрений и многие другие процессы могут быть проведены, только если ядерные реакторы начнут вырабатывать тепло при температуре около 1000 градусов. Проекты таких реакторов уже есть. Более того: один из зарубежных экспериментальных реакторов в течение ряда лет работал при температуре теплоносителя на выходе из активной зоны, равной 950 градусам. Вот краткая характеристика одного из таких опытно-промышленньпх реакторов, разрабатываемых сейчас в нашей стране.
В качестве теплоносителя в нем используется гелий, инертность которого обеспечивает работу различных его конструкций при довольно высокой температуре. Пожалуй, самое оригинальное в этом реакторе - это тепловыделяющие элементы - шарики из графита, внутри которых размещено ядерное топливо в виде двуокиси урана. Такое использование графита и урана позволило достичь высоких температур гелия. В активную зону реактора, выполненного в виде цилиндра из графита, засыпаются, словно горох в банку, сферические тепловыделяющие элементы. Там они раскаляются до 1200- 1300 градусов и разогревают гелий до 1000 градусов.
Затем перекачиваемый газодувками гелий направляется в теплообменники, где и отдает свое тепло технологическому процессу.
Применительно к проектируемому в СССР реактору химиками разрабатывается процесс паровой конверсии природного газа для производства из него водорода, а затем аммиака. На существующих обычных заводах для проведения этого процесса энергию получают, сжигая тот же природный газ. Ядерный же реактор позволяет сэкономить почти половину этого ценного сырья.
На химическом комбинате с ядерным реактором природный газ будет использоваться только как химическое сырье, но не как топливо.
Кстати, именно совмещение процесса паровой конверсии с ядерным реактором может решить проблему обеспечения теплом и паром рассредоточенных потребителей энергии. Вот суть этого способа. Соединяя метан и водяной" пар, с затратой, конечно, тепла от ядерного реактора, получим смесь водорода и окиси углерода. В охлажденном виде эта смесь передается по газопроводу к потребителю. На месте, на специальном катализаторе при температуре 400-600 градусов, проводится обратная реакция - соединение окиси углерода и водорода. При этой реакции выделяется энергия и восстанавливаются исходные вещества, то есть метан и вода. Затем цикл повторяется. Так тепло от реактора в химически связанном виде может быть передано на любое необходимое расстояние без потерь ценных продуктов.
Мы затронули лишь некоторые отрасли народного хозяйства, где в тех или иных масштабах может быть использована энергия атома. А как быть с транспортом?
Ведь исчерпайся сейчас нефть, и мир останется без бензина. Как в таком случае воспользоваться энергией атома?
Очевидно, поможет лишь удобный вторичный энергоноситель. Ведь и сейчас энергия органического топлива в большей мере используется не непосредственно, а через вторичный энергоноситель: горячую воду, пар, электричество. Когда нефть, а затем и газ постепенно начнут исчезать с энергетического рынка, по мнению многих специалистов, наиболее удобным вторичным энергоносителем окажется водород. Он весьма универсален и может использоваться как топливо в авиации, в наземном транспорте, на судах. Водород может служить восстановителем в металлургии и химическим сырьем во многих отраслях промышленности. Возможно, что будет признано эффективным использование этого легкого газа и в качестве топлива в электроэнергетике. Водород почти так же легко транспортировать по газопроводам, как и природный газ. По сравнению с ним он менее взрывоопасен и наиболее удобен с точки зрения экологии.
В общем, всем хорош водород, нужно только найти и разработать высокоэффективный способ его получения.
Конечно, сырьем останется вода, а источником энергии - ядерная энергия и уголь.
Сейчас для получения водорода пользуются электролизом. Однако этот способ далеко не самый эффективный. Судите сами: коэффициент полезного действия современного электролизера, в котором с помощью электроэнергии разлагается вода, 60-65 процентов. При производстве электроэнергии с эффективностью 40 процентов, общий коэффициент преобразования первичной энергии в водород не превысит 25 процентов. Конечно, это слишком дорогая цена за продукт, каким бы ни был он прекрасным энергоносителем. Нужны другие пути его получения. И они есть. Во-первых, усовершенствуется сам электролиз. Если этот процесс проводить при температуре примерно 1000 градусов в ячейках с твердым электролитом, то появляется возможность получать водород путем прямого использования тепла от высокотемпературного ядерного реактора. В этом случае полная общая эффективность электролизного метода преобразования ядерной энергии в водород может возрасти до 65-70 процентов, что уже приемлемо.
Во-вторых, в последние годы усиленно разрабатываются термохимические способы, при которых вода разлагается под действием тепла без использования электричества. При температуре ядерного источника энергии для разложения воды, равной, скажем, 1000 градусам, можно ожидать достаточно высокого коэффициента преобразования ядерной энергии в энергию водорода, равного 50-60 процентам.