Математика. Утрата определенности. - Морис Клайн
Шрифт:
Интервал:
Закладка:
так как при доказательстве [свойств] геометрических фигур иррациональные числа заменяют рациональные всякий раз, когда те отказываются служить нам, и доказывают все то, что не могли бы доказать те… приходится признать, что они [иррациональные числа] являются истинными числами. К тому же нас вынуждают и результаты, проистекающие из их применения, которые нельзя не признать подлинными, достоверными и незыблемыми. С другой стороны, иные соображения заставляют нас отрицать, что иррациональные числа вообще являются числами. Такое сомнение подкрепляется тем, что если мы попытаемся записать иррациональные числа в десятичной форме… то обнаружим, что они непрестанно ускользают от нас и ни одно из них не удается постичь точно… Число же, которому в силу его природы недостает точности, не может быть названо истинным числом… Следовательно, подобно тому как не является числом бесконечность, иррациональное число также не является истинным числом, а как бы скрыто от нас в облаке бесконечности.
Далее Штифель добавляет, что настоящие числа — это либо целые числа, либо дроби, а поскольку иррациональные числа не принадлежат ни к тем, ни к другим, их нельзя считать настоящими числами. Столетие спустя Паскаль и Барроу утверждали, что иррациональные числа не более чем символы, не существующие независимо от геометрических величин, и что логика арифметических операций, производимых над иррациональными числами, должна быть обоснована с помощью теории величин Евклида, хоть эта теория и не в полной мере отвечала поставленной так задаче.{69}
Высказывались и иные утверждения: по мнению некоторых европейских математиков, иррациональные числа с полным основанием можно было считать настоящими числами. Стевин провозгласил иррациональности числами и построил ряд все более точных приближений их с помощью рациональных чисел. Джон Валлис (1616-1703) в своей «Алгебре» (1685) также признал, что иррациональные числа являются числами в полном смысле этого слова. Однако ни Стевин, ни Валлис не привели никаких логических аргументов в подтверждение своего мнения.
Более того, когда Декарт в своей «Геометрии» (1637) и Ферма в рукописи 1629 г. разработали аналитическую геометрию, ни тот, ни другой не имели ясного представления об иррациональных числах. Тем не менее оба исходили из предположения, что между всеми положительными действительными числами и точками на прямой существует взаимно-однозначное соответствие, т.е. что расстояние от любой точки на прямой до какой-то точки, принятой за начало отсчета, может быть выражено числом. Так как многие из чисел при этом оказывались бы иррациональными, Декарт и Ферма тем самым неявно допускали существование иррациональных чисел, несмотря на то что тогда оно еще никак не было логически обосновано.
Европейцам пришлось столкнуться и с проблемой отрицательных чисел. Эти числа стали известны в Европе из арабских текстов, но большинство математиков XVI-XVII вв. не считали отрицательные числа «настоящими» или утверждали, что отрицательные числа не могут быть корнями уравнений. Никола Шюке [1445(?)-1500(?)] в XV в. и Штифель в XVI в. заявляли, что отрицательные числа лишены всякого смысла. Кардано включал отрицательные величины в число корней рассматриваемых им уравнений, но полагал, что отрицательные корни — это просто символы, не имеющие реального смысла. Отрицательные корни уравнений Кардано называл фиктивными и противопоставлял их действительным, т.е. положительным, корням. Виет полностью отвергал отрицательные числа. Декарт принимал их лишь с определенными оговорками. Отрицательные корни уравнений Декарт называл ложными на том основании, что они якобы представляют числа, которые меньше, чем ничто. Однако Декарту удалось показать, как, исходя из любого уравнения, можно построить другое уравнение, корни которого больше корней исходного на любую заданную величину. Тем самым Декарт указал способ, позволяющий преобразовать уравнение с отрицательными корнями в уравнение с положительными корнями. «Фиктивные» корни при таком преобразовании переходили в действительные, и поэтому Декарт неохотно смирился с отрицательными числами, но сомнения и тревоги так и не оставили его.{70} Паскаль считал, например, вычитание числа 4 из 0 операцией, лишенной всякого смысла. В «Мыслях» Паскаля есть выразительное признание: «Я знаю людей, которые никак не могут понять, что если из нуля вычесть четыре, то получится нуль».
Интересный довод против отрицательных чисел выдвинул близкий друг Паскаля теолог и математик Антуан Арно (1612-1697). Арно усомнился в том, что −1:1 = 1:−1. Как может выполняться такое равенство, спрашивал он, если −1 меньше, чем 1? Ведь меньшее число не может относиться к большему так же, как большее к меньшему. Лейбниц, признав правильность возражения Арно, указал, что такого рода пропорции вполне допустимо использовать в вычислениях, ибо по форме они правильны, и сравнил действия, производимые над отрицательными числами, с действиями, производимыми над мнимыми величинами, введенными незадолго до этого. Тем не менее Лейбниц затемнил существо дела, предложив называть мнимыми (несуществующими) все величины, не имеющие логарифма. По мнению Лейбница, число −1 не существует, так как положительные логарифмы соответствуют числам, большим 1, а отрицательные логарифмы (!) соответствуют числам, заключенным между 0 и 1. Следовательно, для отрицательных чисел логарифмов просто «не хватает». Действительно, если бы нашлось какое-нибудь число, соответствующее log(−1), то половина его, как следует из теории логарифмов, соответствовала бы log√−1, a √−1 заведомо не имеет логарифма.
Одним из первых алгебраистов, умышленно не переносившим отрицательный коэффициент в другую часть уравнения, был Томас Гарриот (1560-1621). Однако он отвергал отрицательные корни и даже «доказал» в своем сочинении «Практические аналитические искусства» (Artis analyticae praxis, 1631), опубликованном уже после его смерти, что отрицательные корни не существуют. Ясные и четкие определения отрицательных чисел дал Рафаэль Бомбелли (XVI в.), хотя ему и не удалось обосновать правила действий над отрицательными числами, поскольку в то время отсутствовала логическая основа, необходимая для обоснования положительных чисел.{71} Стевин рассматривал уравнения с положительными и отрицательными коэффициентами и считал отрицательные корни вполне допустимыми. В своем сочинении «Новое изобретение в алгебре» (Invention nouvelle en algèbre, 1629) Альбер Жирар (1595-1632) не проводил никакого различия между отрицательными и положительными числами и указывал оба корня квадратного уравнения, даже если они были отрицательными. И Жирар, и Гарриот употребляли один и тот же знак «минус» для обозначения как операции вычитания, так и отрицательных чисел, хотя следовало бы ввести два отдельных символа, поскольку отрицательное число — независимое понятие, в то время как вычитание — одна из четырех арифметических операций.
В целом можно сказать, что немногие математики XVI-XVII вв. свободно обращались с отрицательными числами или легко восприняли их введение, большинство заведомо не признавали отрицательные числа «настоящими» корнями алгебраических уравнений. По поводу отрицательных чисел среди математиков бытовали самые нелепые предрассудки. Так, Валлис, придерживавшийся прогрессивных для своего времени взглядов и не отвергавший отрицательных чисел, был убежден в том, что отрицательные числа больше, чем бесконечность, и в то же время меньше нуля. В своей «Арифметике бесконечно малых» (Arithmetica infinitorum, 1655) Валлис доказывал, что поскольку отношение a/0 при положительном a обращается в бесконечность, то, когда знаменатель становится отрицательным (отношение a/b с отрицательным b), отношение должно стать больше, чем a/0, так как отрицательный знаменатель меньше нуля. Следовательно, заключал Валлис, отрицательные числа должны быть больше, чем бесконечность.
Некоторые из наиболее передовых мыслителей того времени — Бомбелли и Стевин — предложили представление чисел, которое, несомненно, способствовало принятию всей системы вещественных чисел. Бомбелли предположил, что существует взаимно-однозначное соответствие между вещественными числами и длинами отрезков, отложенными на прямой (с заданной единицей длины), и ввел для длин четыре основных действия. По мнению Бомбелли, вещественные числа и производимые над ними арифметические действия определяются длинами отрезков и соответствующими геометрическими операциями. Тем самым Бомбелли рационализировал систему вещественных чисел на геометрической основе. Стевин также рассматривал вещественные числа как длины и считал, что при подобной интерпретации исчезают все трудности, связанные с введением иррациональных чисел. Разумеется, при таком подходе вещественные числа оказались тесно связанными с геометрией.