Вселенная. Руководство по эксплуатации - Дэйв Голдберг
Шрифт:
Интервал:
Закладка:
Присмотреться к фоновому излучению стоит и еще по одной причине. Чем дальше мы заглядываем в прошлое, тем меньше становится Вселенная. Это значит, все на свете — фотоны, атомы, темная материя — будет сползаться все ближе и ближе друг к другу, а Вселенная в целом станет все более и более насыщена энергией. Вклад фотонов становится особенно важным, именно когда мы заглядываем в прошлое, поскольку, когда Вселенная становится меньше, длины волн отдельных фотонов тоже уменьшаются. Это мы видели в главе 6, когда говорили о «красном сдвиге», происходящем из-за расширения Вселенной. Коротковолновой свет означает, что раньше у каждого фотона было больше энергии. Получается, что раньше не только сахар был слаще и небо голубее, но и излучение плотнее и фотоны энергичнее.
Главный вывод из всего этого таков: чем дальше мы заглядываем в прошлое, тем горячее становится Вселенная и тем выше относительный вклад фотонов в общую энергетическую плотность. Поэтому, например, когда размер Вселенной был всего 1 % от нынешнего, то есть примерно через 17 миллионов лет после Большого взрыва, во всей Вселенной царила комнатная температура. А до этого… здесь начинается самое интересное.
I. Почему мы не можем проследить все развитие Вселенной до самого Большого взрыва?
Комбинация (t = 380 000 лет)Давным-давно, в главе 4, мы говорили о частях атомов и упоминали о том, что водород, самый простой атом, сделан из протона, окруженного электронным облаком. Водород — не только самый простой, но и самый распространенный элемент. Сегодня, как и в ранней Вселенной, водород составляет около 93 % всех атомов. При комнатной температуре водород без электрона не встречается. Однако при высоких температурах, например, внутри Солнца или в ранней Вселенной, атомы подвергались постоянной бомбардировке крайне высокоэнергичными фотонами.
Представьте себе, что капитан Кровавая Борода — это протон. Ни один уважающий себя пират не сочтет свой костюм завершенным без попугая на плече, так вот, пусть попугай — это электрон. Ранняя Вселенная очень похожа на напряженную битву в открытом море. Мимо Кровавой Бороды то и дело свистят пушечные ядра (фотоны), и то и дело его попугая — бац! — сшибают с плеча. Не волнуйтесь, все обойдется, они оба будут целы и невредимы. Разумеется, пираты и попугаи неразлучны, словно булка с колбасой, так что не пройдет и нескольких минут, как на плечо Кровавой Бороде спорхнет другой попугай.
Между тем во время сражения по всему полю битвы летают попугаи и ядра, попугаи и ядра. Во-лее того, самим кораблям ничего не угрожает, поскольку ядра, как правило, сшибают летящего попугая, не успев натворить беды. Но всему приходит конец, даже пиратским сражениям. Ядра перестают летать, а попугаи, устав от бесконечных полетов, присаживаются на плечи — по птице на пирата, как и предназначено природой.
Вот как все было в настоящей Вселенной. Примерно через 380 тысяч лет после Большого взрыва во Вселенной царила страшная жара — 3000 градусов по Цельсию, — а сама Вселенная была всего в 98/1200 своего нынешнего размера. Мы выбираем именно этот момент и договоримся называть его «комбинацией»[111], поскольку именно в этот миг все изменилось.
До комбинации во Вселенной было так жарко, что практически не существовало нейтральных атомов водорода — по Вселенной носились лишь отдельные протоны и электроны, словно смешанный рой ядер и попугаев. Все детали были в наличии, но шныряли туда-сюда, как безумные. Фотоны постоянно сталкивались, абсорбировались и снова испускались. При всех этих столкновениях они не могли долго лететь в одном направлении — их быстро отбрасывало в другую сторону. Даже если бы вы, например, жили спустя 350 тысяч лет после Большого взрыва, то страдали бы близорукостью, поскольку для того, чтобы видеть, нужно, чтобы свет прошел по прямой от предмета до вашего глаза[112].
А после комбинации Вселенная остыла до такой степени, когда фотоны уже не могли отрывать электроны от их протонов, и быстро-быстро начал образовываться обычный нейтральный водород. Все углы и закоулки внезапно оказались набиты нейтральным веществом, а фотонам стало не с кем играть. Фотоны любят заряженные частицы, а нейтральные — не очень. И теперь фотоны стали летать вечно по пустой-пустой Вселенной, пока некоторые из них, особенно везучие, не попали 13,7 миллиарда лет спустя в радиоприемник на Земле или на Тентакулюсе VII.
Поскольку «заглянуть» во времена до комбинации мы не в состоянии, то о самой ранней Вселенной мы можем судить лишь по остаточному излучению, которое летает повсюду, и по всему, что мы видим в звездах, галактиках и скоплениях вокруг нас в наши дни. Как выясняется, если присовокупить к этим наблюдениям кое-какие физические соображения, кусочки мозаики отлично складываются в цельную картинку.
II. Разве Вселенная не наполнена (до половины) антиматерией?
Говорят, нет ничего хуже полузнания, но в этом случае его как раз хватает. Напомним вам два важных факта, а затем выжмем из них все возможное[113], чтобы описать происходившее в ранней Вселенной. Итак, напоминаем:
1. Е = mc2.
2. Если столкнуть частицу с античастицей, они обе будут уничтожены и превратятся в высокоэнергичные фотоны. Сколько именно у них будет энергии? См. выше факт № 1.
Если электрон и позитрон (или любая частица с античастицей) способны сталкиваться друг с другом и превратиться в свет, обратное тоже может случиться — фотоны, сталкиваясь друг с другом, создают позитрон и электрон. Или, если уж на то пошло, могли бы создать протон и антипротон. Только поди их поймай.
Создание частиц происходит, только если энергии фотонов достаточно высоки. Чтобы сделать электроны, нужно много энергии, но чтобы сделать протоны и нейтроны и их античастицы, энергии нужна просто прорва, поскольку массы у них гораздо больше.
Но постойте! Если вы внимательно следили за ходом нашей мысли, то заметили, что космический бульон кишмя кишел высокоэнергичными фотонами — настолько энергичными, что они могли создавать тяжелые частицы. Они повсюду. В ранней Вселенной постоянно создавались с нуля большие тяжелые частицы и античастицы: кварки с антикварками, мюоны с антимюонами, электроны с позитронами — в общем, сами понимаете. Но время не стоит на месте, и при этом фотоны становятся менее энергичными, а это значит, что можно создавать все менее и менее массивные частицы и античастицы, а в конце концов они вообще перестают получаться. Примерно это и происходит сегодня.
Проиллюстрируем это числами: когда Вселенная насчитывала от роду около одной миллионной доли секунды, она остыла до температуры примерно 10 триллионов градусов Цельсия. Это сокрушительно горячо — гораздо горячее, чем нынешние температуры даже в центрах звезд. Даже настолько энергичные фотоны все равно уже ослабели настолько, что не могли производить протоны с антипротонами и нейтроны с антинейтронами. Однако при столкновении двух фотонов по-прежнему хватало энергии на производство кучи всякой всячины — в том числе электронов и позитронов, — и эта всякая всячина производилась целых пять секунд после Большого взрыва.
Только подумайте, Вселенная-то, оказывается, вундеркинд! Почти все, что касается сотворения материи, она проделала в первые пять секунд после рождения. Мы в ее годы только пищали и писались, а она уже создавала все вещество, которое нам понадобится в жизни.
Есть и еще одна тонкость, которая на поверку оказывается очень важной. Когда фотоны сталкиваются, то создают частицу и античастицу, а частица и античастица полностью уничтожают друг друга и создают фотоны. Пока что, насколько мы видели, нет ни одного взаимодействия, при котором создается или уничтожается только частица, без античастицы. Из этого следует, что нельзя создать протон без антипротона или электрон без позитрона. А значит, частиц и античастиц, то есть материи и антиматерии, во Вселенной всегда должно быть строго поровну.
Если вы не понимаете, в чем тут сложность, мы бы попросили вас объяснить, как так вышло, что мир состоит исключительно из материи. И ведь не только Земля. Если бы Луна состояла не из обычной материи, бедняга Нейл Армстронг был бы покойник, стоило ему коснуться поверхности в своем модуле «Орел». Солнце тоже состоит из обычной материи, как и все остальные звезды в нашей Галактике. Если бы это было не так, то космические лучи, бомбардирующие Землю, производили бы уйму антипротонов — а это не так.
А вдруг существуют галактики, состоящие из антиматерии? Вполне вероятно. Только галактики то и дело сталкиваются друг с другом, а мы никогда не видели внегалактического столкновения, при котором выделилось бы столько чистой неукротимой энергии, сколько получилось бы, если бы галактика из материи столкнулась с галактикой из антиматерии. Короче говоря, по всему выходит, что наша Вселенная состоит только из материи. Так вот, если материя и антиматерия создаются и уничтожаются в равном количестве, почему у нас оказалось столько лишней материи?