Вселенная, жизнь, разум - Иосиф Шкловский
Шрифт:
Интервал:
Закладка:
Однако подавляющее большинство звезд главной последовательности излучает с удивительным постоянством. Например, согласно геологическим данным, светимость нашего Солнца за последние несколько миллиардов лет оставалась постоянной с точностью до нескольких десятков процентов. По-видимому, такое постоянство светимости есть общее свойство большинства звезд главной последовательности. Таким образом, важное условие постоянства светимости звезды — центра планетной системы — почти во всех случаях удовлетворяется, во всяком случае, если речь идет о звездах с массой, близкой к солнечной.
Мы довольно подробно рассмотрели температурные условия, при которых возможно возникновение и развитие жизни на той или иной планете, но эти условия, конечно, не единственные. Очень важное значение для рассматриваемой нами проблемы имеют масса образовавшейся каким-либо способом планеты и химический состав ее атмосферы. По-видимому, эти две первоначальные характеристики планеты не являются независимыми. Рассмотрим сперва случай, когда масса образовавшейся планеты невелика. Молекулы и атомы в верхних слоях атмосферы, где ее плотность низка, двигаются с различными скоростями. Часть из них имеет скорость, превышающую «вторую космическую скорость» (астрономы называют эту скорость «параболической»), и будет беспрепятственно уходить за пределы планеты. Этот процесс, до некоторой степени напоминающий испарение, называется «диссипацией». Очевидно, эффективная диссипация может происходить там, где плотность атмосферы настолько низка, что «ускользающие» атомы уже не испытывают столкновений с другими атомами. Если бы такие столкновения имели место, то они могли бы изменить величину и направление скорости ускользающих атомов, что препятствовало бы диссипации.
Диссипация планетных атмосфер происходит непрерывно, так как всегда найдется некоторое количество молекул (атомов), которые при данной температуре атмосферы имеют скорости, направленные «вверх» и превосходящие параболическую. Однако для разных газов доля диссипирующих частиц будет различной. Больше всего она для легких газов — водорода и гелия. Само собой разумеется, что количество диссипирующих частиц зависит, и притом очень чувствительно, от температуры атмосферы на тех высотах, где происходит диссипация.
Математическая теория диссипации планетных атмосфер впервые была развита в начале этого века английским астрономом Джинсом (автором известной космологической гипотезы, см. гл. 9). В дальнейшем она была усовершенствована трудами ряда ученых, в частности, американским астрофизиком Лайманом Спитцером и автором этой книги. Количество атомов, ускользающих из атмосферы за 1 с, дается следующей формулой:
где R0 — радиус планеты, G = 6,7 10-8 — известная постоянная в законе всемирного тяготения, T — температура атмосферы на уровне, где диссипация становится существенной, m — масса атома, M — масса планеты, e = 2,718… — основание натуральных логарифмов, k — постоянная Больцмана, nc — плотность на уровне убегания.
Из этой формулы следует, что весь водород, находящийся в настоящее время в земной атмосфере, должен «ускользнуть» в межпланетное пространство за очень малое время — порядка нескольких лет. (При этом учитывается, что температура земной атмосферы на высоте уровня диссипации (~ 500 км) около 1500 К.). Если бы не постоянное поступление водорода в атмосферу, главным образом из-за испарения мирового океана, водорода в атмосфере нашей планеты не было бы совсем.
Из формулы видно, что скорость диссипации сильно зависит от массы планеты. Это и понятно. Ведь при малой массе параболическая скорость будет невелика, поэтому значительная часть атомов и молекул будет иметь скорость, превышающую параболическую. Например, у Луны, масса которой в 81 раз меньше земной, а радиус близок к 1700 км, параболическая скорость составляет всего лишь 2,4 км/с. Поэтому даже сравнительно тяжелые газы Луна на протяжении своей «космической» истории удержать не могла. Это объясняет отсутствие атмосферы на нашем спутнике. Меркурий также лишен сколько-нибудь плотной атмосферы.
# Впрочем, недавно при наблюдениях спектра Меркурия с высоким разрежением обнаружили, что он имеет чрезвычайно разреженную атмосферу, состоящую главным образом из атомов натрия. #
Таким образом, чтобы на планете могла возникнуть и развиваться жизнь, ее масса не должна быть слишком маленькой. С другой стороны, слишком большая масса планеты также является неблагоприятным фактором. Планеты, массы которых достаточно велики (например, близки к массам планет-гигантов Юпитера и Сатурна), полностью удерживают свою первоначальную атмосферу. Эта «первобытная» атмосфера должна быть очень богата водородом, так как первоначальная среда, из которой образовались планеты, имела примерно тот же химический состав, что и звезды, которые в основном состоят из водорода и гелия. Если планета сохранила «первоначальный» состав среды, из которой она образовалась, ее водородно-гелиевая атмосфера должна быть очень плотной. Исключительно плотной водородно-гелиевой атмосферой обладают планеты-гиганты Юпитер и Сатурн. Мы уже подчеркивали в гл. 8, что если бы массы планет были в 5 — 10 раз больше, чем у Юпитера, они уже принципиально не отличались бы от карликовых звезд. Ряд авторов (например, академик В. Г. Фесенков) считали, что при большом обилии водорода образовавшиеся на его основе химические соединения: аммиак, метан и другие — исключают возможность образования живой субстанции, так как это довольно ядовитые газы. Впрочем, такое утверждение не является бесспорным, и в настоящее время возможность существования примитивных форм жизни на больших планетах Солнечной системы, в принципе нельзя полностью исключать (см. гл. 17). Так или иначе, для того чтобы на планетах могла возникнуть и развиваться жизнь, их массы должны быть ограничены как сверху, так и снизу. По-видимому, нижняя граница возможной массы такой планеты близка к нескольким сотым массы Земли, а верхняя в десятки раз превосходит земную. Как видим, пределы возможных масс планет, пригодных для жизни, достаточно широки.
Те вопросы, которые мы сейчас затронули, тесно переплетаются с основными проблемами планетной космогонии и прежде всего с пониманием самого раннего периода Земли и планет. Мы уже подчеркивали в гл. 10, что пока состояние планетной космогонии таково, что еще не существует определенных ответов на все возникающие важные вопросы. Можно высказать только несколько замечаний самого общего характера. Нельзя считать, что первоначальный сгусток материи, удерживаемый силой взаимного тяготения составляющих его атомов и молекул, из которого впоследствии образовалась Земля, имел химический состав такой же, как Солнце и звезды, т. е. был так же богат водородом и гелием. Можно показать, что никакая диссипация не в состоянии «отсортировать» из такого сгустка водород и гелий. Коль скоро это так, мы должны сделать вывод, что Земля, так же как и другие «внутренние» планеты, образовалась из вещества, бедного водородом и гелием. Таким веществом могли быть пылинки и молекулярные агрегаты, образовавшиеся в первоначальной туманности. Вместе с тем на сравнительно больших расстояниях от Солнца условия были благоприятны для образования довольно массивных водородно-гелиевых конденсаций, которые впоследствии превратились в большие планеты. Для этой схемы трудностью является объяснение химического состава Урана и Нептуна, которые сравнительно бедны водородом и гелием. Об этом мы уже говорили в гл.10.
Во всяком случае, по-видимому, не случайна сравнительная близость к Солнцу планет земной группы и значительная удаленность от него больших планет. Отсюда мы можем сделать важный вывод: то обстоятельство, что планеты, атмосферы которых в принципе пригодны для возникновения и развития жизни, находятся в сравнительной близости от Солнца, т. е. в «зоне обитаемости», является закономерным следствием процесса, приводящего к формированию планетных систем. Это, конечно, повышает вероятность того, что на некоторых планетах данной планетной системы может возникнуть и развиваться жизнь. Итак, разные условия (положение планеты в «зоне обитаемости», подходящая масса ее и «благоприятный» химический состав атмосферы) могут выполняться одновременно, т. е. не являются независимыми.
В этой главе мы рассмотрели некоторые условия, необходимые для возникновения и развития жизни на планетах. Они носят самый общий характер и являются, если можно так выразиться, «астрономическими». Разумеется, чтобы на какой-нибудь планете возникла жизнь, необходимо выполнение ряда других условий. Так, например, очень важно, чтобы на поверхности планеты образовалась жидкая оболочка — гидросфера. Имеются все основания полагать, что первоначальные формы жизни скорее всего могли возникнуть в воде. Но для образования на планете достаточно мощной гидросферы нужно, чтобы существенная часть водорода, находящегося в том первоначальном материале, из которого образовалась планета, не успела диссипировать, а соединилась с кислородом. Это, конечно, накладывает дополнительное, и притом довольно жесткое, условие на массу планеты, ее радиус и расстояние от планеты до звезды. На другом важном условии (уровень жесткой радиации) мы немного остановимся в гл. 13.