Категории
Самые читаемые
onlinekniga.com » Разная литература » Прочее » НИКОЛА ТЕСЛА. ЛЕКЦИИ. СТАТЬИ. - Никола Тесла

НИКОЛА ТЕСЛА. ЛЕКЦИИ. СТАТЬИ. - Никола Тесла

Читать онлайн НИКОЛА ТЕСЛА. ЛЕКЦИИ. СТАТЬИ. - Никола Тесла

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 40 41 42 43 44 45 46 47 48 ... 138
Перейти на страницу:

Среди всех этих явлений, наблюдаемых при использовании тока или электрических импульсов высокой частоты, наиболее увлекательными для аудитории являются те, в которые образуются в электростатическом поле, действующем на значительном расстоянии, и лучшее, что может сделать неопытный лектор — это начать и закончить демонстрацией этих необыкновенных эффектов. Я беру в руки трубку, двигаю ею, и она светится, куда бы я ее не поместил; во всем пространстве действуют невидимые силы. Но я могу сделать другую трубку, и она может не светиться, так как в ней находится очень сильный вакуум. Я возбуждаю ее при помощи катушки пробойного разряда, и теперь она светится в электростатическом поле. Я могу спрятать ее на несколько недель, или месяцев, и после этого она все еще сохранит способность к возбуждению. Какое изменение я вызвал в трубке, вызвав в ней возбуждение? Если атомам придается движение, то трудно понять, как оно может так долго сохраняться и не гаснуть из- за фрикционных потерь. Если в диэлектрике возникает натяжение, такое как при простом получении света, то легко увидеть, как он может неопределенно долго сохраняться, по очень трудно понять, почему это может вызывать возбуждение, когда мы имеем дело с быстро меняющимися потенциалами.

С тех пор, когда я впервые показал это явление, мне удалось получить еще несколько интересных эффекты. Например, мне удалось добиться высшей степени накала электрода, нити накаливания или проволоки, находящихся в трубке. Чтобы достичь этого результата, необходимо было минимизировать потери энергии, поступающей из поля, большая часть которой направляется на маленькое тело для приведения его в состояние накала. В начале эта задача показалась трудной, но весь мой предыдущий опыт работы помог мне легко достичь желаемого результата. На Рис. 34 и Рис. 35 изображены две такие трубки, изготовленные специально для данного случая. На Рис. 34 короткая трубка Tj, припаянная к более длинной трубке Т, снабжена ножкой S с запаянной в нее платиновой проволокой. К этой проволоке прикреплена очень тонкая нить накаливания f, а вывод наружу сделан из тонкой медной проволоки W. Трубка снаружи и изнутри имеет покрытия С и С j соответственно. Внутреннее пространство трубки до уровня каждого покрытия заполнено электропроводным порошком, а пространство над ними — неэлектропроводным. Эти покрытия используются только для того, чтобы можно было провести два эксперимента с трубкой, а именно: получить желаемый эффект при помощи либо прямого подключения тела экспериментатора или другого тела к проводу W, либо посредством индуктивного воздействия через стекло. Ножка S снабжена алюминиевой трубкой а, назначение которой было указано ранее, и только маленькая часть нити накаливания выходит из этой трубки. Если трубку Т] поместить куда угодно в электростатическое поле, то нить накаляется.

Более интересная часть устройства показана на Рис. 35. Конструкция та же, что и раньше, только вместо нити лампы используется маленькая платиновая проволочка 1 р, запаяная в ножку S и согнутая выше нее в кольцо, подсоединена к медному проводу W, который соединяется с внутренней обкладкой С. Маленькая ножка S j имеет иголку, на острие которой установлена очень легкая крыльчатка из слюды V, которая легко может вращаться. Чтобы крыльчатка не слетела, тонкая стеклянная ножка g изогнута соответствующим образом и прикреплена к алюминиевой трубке.

Когда стеклянную трубку держат в электростатическом поле, платиновая проволочка накаляется, и слюдяная крыльчатка очень быстро крутится.

В лампе можно возбудить очень интенсивную флуоресценцию, просто соединив ее с находящейся в поле пластиной, площадь которой не требуется намного большей чем у обычного абажура. Фосфоресценция, возбуждаемая этими токами, несравнимо интенсивнее, чем от обычного аппарата. Маленькая фосфоресцентная лампа, если ее подключить к соединенному с катушкой проводу, испускает достаточно света, чтобы можно было прочесть обычный шрифт на расстоянии в пять-шесть шагов. Было интересно посмотреть, как будут вести себя при этих токах некоторые из фосфоресцентных ламп Профессора Крукса, и он любезно одолжил мие несколько по этому поводу. Получаемые эффекты впечатляют, особенно с сульфидом кальция и сульфидом цинка. С катушкой пробойного разряда они сильно светились, если их просто держать в руке, соединив тело с контактом катушки.

К каким бы результатам ни привели такого рода исследования, в настоящее время основной их интерес лежит в направлении открываемых ими возможностей для создания эффективного осветительного прибора. Ни в какой другой области электрической индустрии так не нужен прогресс, как в получении света. Каждый мыслящий человек, если он вдумается в то, насколько варварские методы используются [сейчас], насколько плачевны потери в лучших наших системах производства света, должен спросить себя: Каким же должен быть свет в будущем? Будет ли он [получаться] от раскаленного твердого тела, как в нынешней лампе, или от раскаленного газа, или от фосфоресцентного тела, или от чего-нибудь наподобие горелки, но несравнимо более эффективной?

Шанс разработать газовую горелку крайне мал; и не потому, вероятно, что человеческий гений многие века корпел над этой проблемой без какого-либо радикального прогресса, — хотя этот аргумент также не лишен силы, — но потому, что в горелке более высокие вибрации никогда нельзя достичь, не пройдя через все более низкие. Потому что как получить пламя, кроме как через падение поднятых грузов? Подобный процесс не может идти без возобновления, а возобновление повторяется, проходя от низких вибраций к высоким. По- видимому, есть только один путь улучшить горелку, а именно, пытаясь достичь более высоких степеней накаливания. Более высокое накаливание эквивалентно более быстрой вибрации. Это означает больше света от того же [количества] вещества, а это в свою очередь означает более высокую экономию. В этом направлении уже сделаны некоторые усовершенствования, но дальнейшему развитию препятствуют множество ограничений. Таким образом, если не принимать в расчет пламя, то остаются три, ранее обозначенных пути, и все они ведут через электричество.

Представьте себе, что в ближайшем будущем свет будет получаться в результате накала твердого тела электричеством. Разве не лучше будет использовать маленький электрод, нежели непрочную нить накала? Несомненно, что исходя из множества соображений, использование электрода должно быть признано более экономичным, разумеется, при условии, что будут успешно преодолены сложности, связанные с работой таких ламп. Но для того, чтобы зажечь такую лампу, нам необходимо более высокое напряжение, а для экономичного использования таких ламп нам необходима более высокая частота тока.

Эти доводы даже в большей степени относятся к производству света при помощи накала газа, или фосфоресценции. Во всех случаях нам требуется более высокая частота и более высокое напряжение. Я пришел к этим умозаключениям давно.

Использование тока высокой частоты имеет множество преимуществ, например: высокая экономия энергии при производстве света, возможность работать с использованием только одного провода, возможность избавиться от необходимости использовать внутренний провод и т. д.

Но вопрос в том, как далеко мы можем идти по пути увеличения частоты? Обычные проводники при сильном повышении частоты теряют способность к передаче электрических импульсов. Предположим, что у нас есть самые совершенные средства производства импульсов. Тогда возникает вопрос: "А как мы будем передавать импульсы, когда возникнет необходимость?" При передаче таких импульсов через проводник, мы должны помнить, что нам придется иметь дело с давлением и с потоком, в обычном понимании этих терминов. Если увеличить давление до огромной величины, и соответственно снизить поток, тогда такие импульсы, несомненно, можно будет передавать по проводам, даже если их частота будет [исчисляться многими сотнями колебаний в секунду. Разумеется, совершенно невозможно будет передавать такие импульсы через провод, погруженный в газовую среду, даже если этот провод покрыт толстым слоем самой лучшей изоляции, поскольку большая часть энергии будет теряться вследствие молекулярных бомбардировок и последующего нагревания. Конец провода, подключенный к источнику энергии, будет нагреваться, а от источника до дальнего конца провода дойдет лишь малая толика энергии. Таким образом получается, что для того, чтобы использовать такие электрические импульсы, в первую очередь нужно найти способ снизить до минимального уровня рассеивание энергии.

1 ... 40 41 42 43 44 45 46 47 48 ... 138
Перейти на страницу:
На этой странице вы можете бесплатно читать книгу НИКОЛА ТЕСЛА. ЛЕКЦИИ. СТАТЬИ. - Никола Тесла.
Комментарии