Большая Советская Энциклопедия (ЭЛ) - БСЭ БСЭ
Шрифт:
Интервал:
Закладка:
В характере Э. в. для электронов (позитронов) и для мюонов не обнаружено отличия несмотря на значит, разницу в их массах; это легло в основу т. н. m-е-универсальности, пока не получившей теоретического объяснения.
Э. в. адронов и атомных ядер. В электромагнитных процессах с участием адронов (фоторождении мезонов, рассеянии электронов и мюонов на протонах и ядрах, аннигиляции пары е+ е- в адроны и др.) один из объектов взаимодействия — электромагнитное поле — хорошо изучен. Это делает Э. в. исключительно эффективным инструментом исследования строения адронов и природы сильных взаимодействий.
Сильные взаимодействия, как уже упоминалось, играют важную роль в электромагнитных процессах с участием адронов. Так, резонансные состояния адронов (резонансы ) могут возбуждаться фотонами и ярко проявляются, например, в полных сечениях поглощения фотонов протонами с образованием адронов (рис. 2 ). Электромагнитные свойства и электромагнитная структура адронов (магнитные моменты, поляризуемости, распределения зарядов и токов) обусловлены «облаком» виртуальных частиц (преимущественно p-мезонов), испускаемых адронами. Например, среднеквадратичный радиус распределения заряда в протоне определяется размерами этого «облака» и составляет ~0,8×10-13 см (см. Формфактор ). Вместе со слабыми взаимодействиями Э. в. ответственны за различие масс заряженных и нейтральных частиц в изотопических мультиплетах (например, n и р, p0 и p± ). Короткодействующий характер сильных взаимодействий определяет при энергиях (R — размер адронной системы) участие в реакциях лишь низших мультипольных моментов фотона и, как следствие этого, плавную зависимость дифференциальных сечений от углов. При высоких энергиях (Е>2 Гэв ) угловые и энергетические зависимости характеристик (сечений, поляризаций и др.) процессов Э. в. адронов и чисто адронных процессов схожи [на рис. 2 s (g p) при Е>2 Гэв слабо зависит от энергии, что характерно для полных сечений взаимодействия адронов].
Это сходство легло в основу модели векторной доминантности, согласно которой фотон взаимодействует с адронами, предварительно перейдя в адронное состояние — векторные мезоны r0 , w, j и др. Возможность такого перехода ярко иллюстрируется резонансной зависимостью от энергии сечения процесса е+ + е- ® К+ + К- , обусловленной превращением виртуального фотона промежуточного состояния в векторный j-мезон и его последующим распадом на пару К-мезонов (рис. 3 , б). Виртуальный фотон характеризуется отличным от 0 значением квадрата 4-мерного импульса q 2 = E 2 /c 2 — p 2 ¹ 0, где Е, р — энергия и трёхмерный импульс фотона (для реального фотона q 2 = 0). Например, для виртуального фотона, которым обмениваются электрон и протон при рассеянии, q 2 = —(4EE '/c 2 ) sin 2 (J/2), где Е, E' — энергии электрона до и после рассеяния (для случая Е, E' >> mc2 ), J — угол рассеяния в лабораторной системе отсчёта. Эксперимент показал удовлетворит. применимость модели векторной доминантности для описания электромагнитных явлений с участием реальных фотонов и виртуальных фотонов с |q2 |< 2 (Гэв/с )2 . В частности, в сечении аннигиляции е+ + е- ® m+ + m- при энергии в системе центра масс 1019,5 Мэв наблюдаются отклонения от предсказаний квантовой электродинамики, которые вытекают из данной модели (обусловлены образованием К-мезона в промежуточном состоянии; см. рис. 3, а). (Согласно квантовой электродинамике, этот процесс происходит посредством превращения пары е+ е- в виртуальный фотон g, а g — в пару m+ m- .
Однако модель векторной доминантности не описывает Э. в. адронов при больших |q2 | [|q 2 | > 2 (Гэв/с 2 ]. Так, измеренное сечение упругого рассеяния электронов на протонах, которое зависит от пространственного распределения электрических зарядов и токов внутри нуклона, спадает с ростом |q 2 | значительно быстрее, чем предсказывается моделью. Напротив, сечение глубоко неупругого рассеяния электронов (процесса е- + р ® е- + адроны при больших передачах энергии и импульса адронной системе) падает медленнее; при этом с увеличением полной энергии W адронов в конечном состоянии характер рассеяния приближается к характеру рассеяния на точечной частице. Последнее обстоятельство привело к формулировке т. н. партонной модели адронов; согласно этой модели адроны состоят из частей (партонов), которые при взаимодействии с фотонами проявляют себя как бесструктурные точечные частицы. Отождествление партонов с кварками оказалось плодотворным для понимания глубоко неупругого рассеяния.
Несмотря на то, что Э. в. — наиболее полно изученный тип фундаментального взаимодействия, его продолжают интенсивно исследовать во многих научных центрах. Это обусловлено как исключительным многообразием микроскопических и макроскопических проявлений Э. в., имеющих прикладное значение, так и уникальной ролью электромагнитного поля (как хорошо изученного объекта) в исследовании строения вещества на предельно малых расстояниях, в получении сведений о других типах взаимодействий, в выявлении новых законов и принципов симметрии в природе. Эти фундаментальные исследования ведутся с использованием прецизионных методов атомной и ядерной спектроскопии, с помощью полученных на ускорителях интенсивных пучков фотонов, электронов, мюонов высокой энергии, в космических лучах .
Лит.: Электромагнитные взаимодействия и структура элементарных частиц, пер. с англ., М., 1969; Ахиезер А. И., Берестецкий В. Б., Квантовая электродинамика, 3 изд., М., 1969; Фельд Б., Модели элементарных частиц, пер. с англ., М., 1971; Фейнман Р., Взаимодействие фотонов с адронами, пер. с англ., М., 1975; Вайнберг С., Свет как фундаментальная частица, пер. с англ., «Успехи физических наук», 1976, т. 120, в. 4.
А. И. Лебедев.
Рис. 1. Диаграмма Фейнмана для рассеяния света на свете: ? + ? ?? + ?(а) в квантовой электродинамике; волнистые линии изображают фотоны, прямые — электроны и позитроны вакуума. Этот процесс наблюдался (б) при рассеянии фотонов на кулоновском поле ядра (помечено крестиками), т. е. на виртуальных фотонах.
Рис. 2. Зависимость от энергии фотона Е? в лабораторной системе полного сечения ? (?p) поглощения фотонов протонами, приводящего к образованию адронов. Максимумы соответствуют возбуждению фотонами нуклонных резонансов.
Рис. 3. Поведение сечений s (в произвольных единицах) процессов е+ + е- ® m+ + m- (а) и е+ + е- ® К+ + К- (б) в окрестности порога рождения j-мезона. По оси абсцисс отложена разность Е — Мс2 , где Е — полная энергия в системе центра масс, М — масса покоя j-мезона (Мс2 = 1019,5 Мэв ). Пунктирная кривая на рис. а — предсказание квантовой электродинамики. Сплошные кривые — результаты расчётов с учётом превращения виртуального фотона в j-мезон и его последующего распада на пару m+ m- через виртуальный фотон или на К+ + К- . Экспериментальные точки получены на установке со встречными пучками е+ е- .
Электромагнитные волны
Электромагни'тные во'лны, электромагнитные колебания , распространяющиеся в пространстве с конечной скоростью. Существование Э. в. было предсказано М. Фарадеем в 1832. Дж. Максвелл в 1865 теоретически показал, что электромагнитные колебания не остаются локализованными в пространстве, а распространяются в вакууме со скоростью света с во все стороны от источника. Из того обстоятельства, что скорость распространения Э. в. в вакууме равна скорости света, Максвелл сделал вывод, что свет представляет собой Э. в. В 1888 максвелловская теория Э. в. получила подтверждение в опытах Г. Герца , что сыграло решающую роль для её утверждения.
Теория Максвелла позволила единым образом подойти к описанию радиоволн , света, рентгеновских лучей и гамма-излучения . Оказалось, что это не излучения различной природы, а Э. в. с различной длиной волны. Частота w колебаний электрического Е и магнитного Н полей связана с длиной волны l соотношением: l= 2pс /w. Радиоволны, рентгеновские лучи и g-излучение находят своё место в единой шкале Э. в. (рис. ), причём между соседними диапазонами шкалы Э. в. нет резкой границы.