Курс общей астрономии - П.И.Бакулин
Шрифт:
Интервал:
Закладка:
§ 178. Об эволюции галактик
Соотношение общего количества звездного и межзвездного вещества в Галактике со временем изменяется, поскольку из межзвездной диффузной материи образуются звезды, а они в конце своего эволюционного пути возвращают в межзвездное пространство только часть вещества; некоторая его часть остается в белых карликах. Таким образом, количество межзвездного вещества в нашей Галактике должно со временем убывать. То же самое должно происходить и в других галактиках. Перерабатываясь в звездных недрах, вещество Галактики постепенно изменяет химический состав, обогащаясь гелием и тяжелыми элементами. Предполагается, что Галактика образовалась из газового облака, которое состояло главным образом из водорода. Возможно даже, что, кроме водорода, оно никаких других элементов и не содержало. Гелий и тяжелые элементы образовались в таком случае в результате термоядерных реакций внутри звезд. Образование тяжелых элементов начинается с тройной гелиевой реакции ЗНе4 ® C 12, затем С12 соединяется с a-частицами, протонами и нейтронами, продукты этих реакций подвергаются дальнейшим преобразованиям, и так появляются все более и более сложные ядра. Однако образование самых тяжелых ядер, таких как уран и торий, постепенным наращиванием объяснить нельзя. При этом неизбежно пришлось бы пройти через стадию неустойчивых радиоактивных изотопов, которые распадутся быстрее, чем успеют захватить следующий нуклон. Поэтому предполагается, что самые тяжелые элементы, стоящие в конце менделеевской таблицы, образуются при вспышках сверхновых звезд. Вспышка сверхновой представляет собой результат быстрого сжатия звезды. При этом температура катастрофически возрастает, в сжимающейся атмосфере идут цепные термоядерные реакции и возникают мощные потоки нейтронов. Интенсивность нейтронных потоков может быть столь велика, что промежуточные неустойчивые ядра не успевают разрушиться. Прежде чем это произойдет, они захватывают новые нейтроны и становятся устойчивыми. Как уже упоминалось, содержание тяжелых элементов в звездах сферической составляющей много меньше, чем в звездах плоской подсистемы. Это объясняется, по-видимому, тем, что звезды сферической составляющей образовались в самой начальной стадии эволюции Галактики, когда межзвездный газ был еще беден тяжелыми элементами. В то время межзвездный газ представлял собой почти сферическое облако, концентрация которого увеличивалась к центру. Такое же распределение сохранили и звезды сферической составляющей, образовавшиеся в эту эпоху. В результате столкновений облаков межзвездного газа их скорость постепенно уменьшалась, кинетическая энергия переходила в тепловую и менялась общая форма и размеры газового облака. Расчеты показывают, что в случае быстрого вращения такое облако должно было принять форму сплющенного диска, что мы и наблюдаем в нашей Галактике. Звезды, образовавшиеся в более позднее время, образуют поэтому плоскую подсистему. К тому времени, как межзвездный газ сформировался в плоский диск, он прошел переработку в звездных недрах, содержание тяжелых элементов значительно увеличилось и звезды плоской составляющей поэтому тоже богаты тяжелыми элементами. Часто звезды плоской составляющей называют звездами второго поколения, а звезды сферической составляющей – звездами первого поколения, чтобы подчеркнуть тот факт, что звезды плоской составляющей образовались из вещества, уже побывавшего в звездных недрах. Аналогичным образом протекает, вероятно, эволюция и других спиральных галактик. Форма спиральных рукавов, в которых сосредоточен межзвездный газ, по-видимому, определяется направлением силовых линий общего галактического магнитного поля. Упругость магнитного поля, к которому «приклеен» межзвездный газ, ограничивает уплощение газового диска. Если бы на межзвездный газ действовала только сила тяжести, его сжатие продолжалось бы неограниченно. При этом вследствие большой плотности он быстро сконденсировался бы в звезды и практически исчез бы. Есть основания полагать, что скорость образования звезд приблизительно пропорциональна квадрату плотности межзвездного газа. Если галактика вращается медленно, то межзвездный газ собирается под действием силы тяжести в центре. По-видимому, в таких галактиках магнитное поле слабее и меньше препятствует сжатию межзвездного газа, чем в быстро вращающихся. Большая плотность межзвездного газа в центральной области приводит к тому, что он быстро расходуется, превращаясь в звезды. В результате медленно вращающиеся галактики должны иметь приблизительно сферическую форму с резким увеличением звездной плотности в центре. Мы знаем, что как раз такие характеристики имеют эллиптические галактики. По-видимому, причина их отличия от спиральных заключается в более медленном вращении. Из сказанного выше понятно также, почему в эллиптических галактиках мало звезд ранних классов и мало межзвездного газа. Таким образом, эволюцию галактик можно проследить начиная со стадии газового облака приблизительно сферической формы. Облако состоит из водорода, оно неоднородно. Отдельные сгустки газа, двигаясь, сталкиваются друг с другом, – потеря кинетической энергии приводит к сжатию облака. Если оно вращается быстро, получается спиральная галактика, если медленно – эллиптическая. Естественно задать вопрос, почему вещество во Вселенной разбилось на отдельные газовые облака, ставшие потом галактиками, почему мы наблюдаем разлет этих галактик, в какой форме находилась материя во Вселенной до того, как образовались галактики. Эти интересные и важные проблемы мы рассмотрим в § 181.
§ 179. Происхождение планет. Гипотезы Канта, Лапласа и Джинса
В XVIII в. в результате успехов ньютоновской механики установилось представление о Вселенной как о неизменной системе космических тел, управляемой точными законами природы. В этой системе не было места для божественного произвола, за исключением начального момента «акта творения». Считалось, что сложный механизм Вселенной был запущен один раз («начальный толчок»), а дальше уж он «шел» сам собой без каких-либо изменений. Первые попытки рассмотреть эволюцию космических тел были сделаны Бюффоном (1749 г) и Кантом (1755 г.). Кант высказал предположение, что Солнечная система образовалась из облака газа и пыли. В центре облака возникло Солнце, в периферийных частях – планеты. Эта картина, по-видимому, в общих чертах правильна, но в то время она не поддавалась детальной разработке, так как не существовало еще атомной теории, термодинамики, кинетической теории газов, сведений о космическом обилии элементов и многих других необходимых данных. В 1796 г. Лаплас в популярной форме высказал идею о том, что в процессе образования планет может играть большую роль вращение туманности. В самом деле, пусть элемент массы т сжимающейся сферической туманности вращается с угловой скоростью по орбите, радиус которой r. Если момент количества движения этого элемента I = mwr2 остается постоянным, то w возрастает при сжатии туманности. Пусть полная масса туманности M. Тогда на элемент m действуют сила тяжести и центробежная сила Центробежная сила при сжатии растет быстрее, чем сила тяжести, и при их равенстве возникает так называемая ротационная неустойчивость, при которой туманность сплющивается, принимая форму чечевицы, и с ее экватора отделяется вещество. Из выброшенного вещества вокруг туманности образуются плоские кольца, похожие на кольца Сатурна. Лаплас полагал, что газ, выброшенный из туманности, впоследствии конденсируется в планеты. В современных космогонических представлениях сохранились определенные элементы гипотез Канта и Лапласа (идея совместного образования Солнца и планет из единой первичной туманности, роль ротационной неустойчивости), так что они упоминаются здесь не только ради исторического интереса. Как уже говорилось, в солнечной системе 98% момента количества движения принадлежит планетам и только 2% Солнцу. А если момент количества движения отнести к единице массы (эта величина называется удельным угловым моментом), то различие получается уже не в 50, а в 50 000 раз. Гипотезы Канта и Лапласа этого объяснить не могли. В самом деле, в первичной туманности перед началом сжатия все элементы равноправны и имеют одинаковые угловые скорости. Английский ученый Джинс в начале нынешнего столетия предложил другую космогоническую гипотезу, которая как будто бы позволяла обойти эту трудность. В гипотезе Джинса предполагается, что Солнце, как и другие звезды, сформировалось без планетной системы, а планетная система появилась только в результате катастрофы: другая звезда прошла рядом с Солнцем настолько близко, что вырвала из его недр часть вещества. В результате конденсации этого вещества образовались планеты. Можно показать, что вероятность достаточно близкого прохождения двух звезд очень мала и за время существования Галактики в ней могло образоваться лишь очень небольшое количество планетных систем, может быть, даже всего одна – наша Солнечная система. Этот вывод сам по себе заставлял усомниться в правильности гипотезы Джинса, однако его, строго говоря, нельзя рассматривать как решительное возражение. Более тщательное рассмотрение гипотезы Джинса позволило выявить другие аргументы, которые неопровержимо доказывают ее несостоятельность. Удельный угловой момент выброшенного из Солнца вещества не может быть больше, чем угловой момент проходящей рядом звезды. Расчет показывает, что для образования Солнечной системы было бы необходимо, чтобы Солнце и другая звезда встретились со скоростью около 5000 км/сек, а это гораздо больше, чем параболическая скорость в Галактике (300 км/сек). В Галактике звезд, со скоростями, большими параболической, очень мало. Спектральный анализ показывает, что содержание лития и дейтерия на Солнце гораздо меньше, чем на Земле. Литий и дейтерий «выгорают» в результате ядерных реакций, и если на планетах их больше, то это означает, что планетное вещество отделилось от солнечного еще до того, как в последнем начались ядерные реакции. Наконец, был рассмотрен вопрос о конденсации газового волокна, вырванного из недр Солнца. Температура газа в таком волокне должна быть очень высокой, несколько сотен тысяч градусов. Внутри Солнца газовое давление уравновешивается весом вышележащих слоев, а если газ с такой температурой будет выброшен наружу, он быстро рассеется, если только еще быстрее не остынет. Было подсчитано, что для разлета выброшенного газа будет достаточно нескольких часов, а для остывания необходимо несколько месяцев.