Категории
Самые читаемые
onlinekniga.com » Научные и научно-популярные книги » Техническая литература » История электротехники - Коллектив авторов

История электротехники - Коллектив авторов

Читать онлайн История электротехники - Коллектив авторов

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 42 43 44 45 46 47 48 49 50 ... 248
Перейти на страницу:

Многочисленные научные и прикладные проблемы, связанные с ЭМП, должны более полно входить в раздел теории поля современных теоретических основ электротехники.

4.14. ВЛИЯНИЕ ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ НА РАЗВИТИЕ ТЭ

Для создания новых устройств при помощи их математических моделей важное значение имеет возможность представления количественных характеристик, определяющих исследуемые процессы нового устройства, в виде аналитических зависимостей и численных данных. Важнейшими для практики теоретическими проблемами оказались разработка методов учета особенностей протекания электромагнитных процессов в зависимости от электромагнитных свойств сред и их конфигурации, формирование принципов и методов анализа и синтеза математических моделей электротехнических устройств, а также диагностирование процессов в них и управление ими. История создания общих подходов к решению этих проблем — важнейшая часть истории ТЭ. Поскольку ТЭ является мостом между фундаментальной и прикладной науками, она вынуждена была выбирать и разрабатывать такие математические методы, которые позволяют производить аналитические исследования и численные расчеты с необходимой для практики точностью. Возможность получения аналитических решений, как правило, определяется сложностью математической модели. Точность же численных расчетов в рамках данной математической модели определяется возможностями аппаратных средств, используемых для выполнения численных расчетов.

По этим причинам методы, предлагаемые в ТЭ, развивались с развитием новых разделов математики и средств вычислительной техники. Появление ЭВМ и их внедрение в практику, начиная с 1950 г., оказало решающее воздействие на ТЭ.

Практика использования ЭВМ для расчета электрических цепей привела к существенному изменению направления теоретических разработок в ТЭ. Ограниченные возможности существоваших до появления ЭВМ средств численных расчетов стимулировали развитие методов, позволяющих снижать количество уравнений, вынуждали развивать теорию подобия и создавать физические и математические аналоги электрических цепей.

Так, например, в 50-е годы широкое распространение получили расчетные столы для исследования сложных цепей и систем, физические модели электроэнергетических систем (М.П. Костенко, Л.Р. Нейман, В.А. Веников, и др.), аналоговые и цифроаналоговые модели (Г.Е. Пухов, Б.Я. Коган, Н.Е. Кобринский, Г. Ольсон и др.) и цифровые дифференциальные анализаторы (А.В. Каляев) для исследования переходных процессов. Ограниченное математическое обеспечение первого и второго поколения ЭВМ вынудило записывать уравнения электрических цепей в виде системы дифференциальных уравнений, разрешенных относительно первой производной, т.е. в форме уравнений Коши. Поскольку динамические свойства цепей определяются появлением ЭДС при изменении магнитного потока и токов смещения вследствие изменения потока электрического смещения, то уравнения Коши для цепей естественно записать для переменных потокосцеплений Ψ и электрических зарядов Q. Поскольку именно таков был подход к выбору значимых переменных в термодинамике, то и в ТЭ эти переменные были названы переменными состояния. В 1957 г. Т.Р. Башков впервые записал уравнения электрических цепей относительно переменных состояния. Развитие матрично-топологического метода в большой мере определялось необходимостью автоматизировать ввод данных о топологии цепи и формировать на этой основе уравнения состояния (Г. Крон, Р. Рорер, Ф.Х. Брэнин, С.Д. Фенвес, Э. Ку, Д.Р. Рос, И.П. Норенков, В.Н. Ильин и др.).

Численные расчеты электрических цепей на ЭВМ показали, что использование стандартного математического обеспечения недостаточно для эффективного использования вычислительной техники. Специфичными для цепей были проблемы учета разреженности узловых и контурных матриц параметров, большого разброса собственных чисел этих матриц, жесткости системы дифференциальных уравнений; проблемы достижения решения для периодических установившихся режимов, выбора переменных для обеспечения однозначности решения уравнений нелинейных цепей и др. Вклад ученых (Н. Сато, В.Ф. Тинней, Г.Д. Хэчел, Р.К. Брейтон, Т.Д. Эприл, Т.Н. Трик, К.В. Гир, К.Г. Бройден, Ю.В. Ракитский, С.М. Устинов, К.С. Демирчян, П. А. Бутырин и др.), работающих в области ТЭ, при решении этих проблем привел к появлению в прикладной математике новых разделов. Так, например, метод обращения слабозаполненных матриц, предложенный Н. Сато и В.Ф. Тиннеем инициировал создание таких матриц в прикладной математике. Проблемы выбора шага численного интегрирования в случае жесткости системы дифференциальных уравнений были успешно решены Ю.В. Ракитским и его учениками при помощи разработки нового метода численного интегрирования, названного системным. По этой методике можно на каждом новом шаге интегрирования удвоить его без снижения точности интегрирования и нарушения устойчивости численного процесса интегрирования. Метод, названный Ю.В. Ракитским квазистационарностью производной, позволил существенно упростить решение жестких систем уравнений, снизить их порядок. Использование метода нахождения решения для установившегося состояния при помощи операторного метода (К.С. Демирчян, П.А. Бутырин) позволило организовать такой процесс численного решения уравнений состояний, в котором сочетаются все достоинства системных методов с непосредственным расчетом установившегося режима.

Еще одним важным направлением численных расчетов динамики цепей оказалось приведение цепей с реактивными элементами методом конечно-разностного представления операции дифференцирования при помощи ее дискретной схемы замещения к цепям, содержащим только резисторы и источники. Этот метод обладает тем преимуществом, что позволяет без потери топологического соответствия исходной и дискретной схем замещения использовать весь арсенал преобразования цепей для создания типовых макромоделей различных устройств. Однако специфические особенности цепей сохраняются и для их дискретных аналогов. В этой связи следует выделить работы, проводившиеся на кафедре ТОЭ Ленинградского политехнического института (К.С. Демирчян, Н.В. Коровкин и др.), где на основе синтеза численного метода интегрирования и идеи дискретных схем были предложены новые методы создания макромоделей дискретных схем, названных синтетическими, которые позволили использовать все преимущества системных методов интегрирования и метода квазистационарности производной, чтобы сочетать наглядность дискретных схем с экономичностью и устойчивостью системных методов. На основе этих идей оказалось возможным создание макромоделей цепей с распределенными параметрами, что дало возможность рассматривать задачи, решение которых было затруднено.

Большое количество работ по новым методам численных расчетов выполнено для определения распределения потоков мощности в электроэнергетической системе СССР в режиме реального времени. Эта задача была сложна для решения вследствие сложности ЕЭС СССР и квазилинейности уравнений баланса мощностей. Эти работы (А.З. Гамм, Л.А. Крумм, С.М. Устинов, Л.Н. Герасимов и др.) посвящены методам расчетов цепей при условиях обеспечения такой эффективности самого процесса численного расчета, при котором возможно управление потоками мощностей в темпе реального времени. В них поставлены и частично решены проблемы верификации результатов расчетов при условии недостаточности и неточности исходной информации о состоянии системы и ее параметров.

В области ЭМП наибольшее влияние ЭВМ сказалось на разработке математических моделей, методов численного интегрирования, а также способов описания и ввода в ЭВМ реальной конфигурации и свойств среды исследуемого устройства. Быстродействие вычислительной техники, особенно в конце XX в., и новые методы обработки и представления результатов численных расчетов позволили производить практические расчеты для математических моделей на все более и более детальном уровне описания геометрических особенностей устройства, а также свойств материалов, используемых в нем. В этих условиях классические методы решения задач численного расчета (Г.И. Марчук, А.А. Самарский, Н.П. Калиткин и др.), особенно метод интегральных уравнений, нуждались в существенном развитии. Особое значение приобрела разработка при помощи современных вычислительных машин математических моделей таких свойств материалов, как гистерезис, вследствие важного значения гистерезисных явлений в теории поля, автоматики и регулирования процессами в сложных системах, о чем свидетельствуют работы иностранного члена РАН академика Словацкой академии наук О. Бенды, О.В. Толмачева, С.Х. Щерапа, Г. Фридмана и др. По этой причине и в ТЭ значительное место заняла разработка новых методов расчета ЭМП, в максимальной мере использующих возможности ЭВМ, и учета в них особенностей уравнений ЭМП. Особое внимание уделялось проблемам численного интегрирования уравнений ЭМП методом конечных элементов, сеток и интегральных уравнений (Ю.В. Ракитский, О.В. Тозони, К.С Демирчян, В.Л. Чечурин, А.Ф. Верлань и др.). Отечественные методы моделирования и численного расчета ЭМП, особенно в трехмерных областях с нелинейными и анизотропными свойствами, разработанные и апробированные даже на маломощных ЭВМ 70-х годов школой К.С. Демирчяна и Ю.В. Ракитского, были широко использованы в практике проектирования новых электрических машин большой мощности, в том числе на основе использования явления сверхпроводимости. При этом оказалось, что математические модели, созданные с учетом особенностей физических процессов и численных методов, наиболее продуктивны при решении проблем прикладного характера.

1 ... 42 43 44 45 46 47 48 49 50 ... 248
Перейти на страницу:
На этой странице вы можете бесплатно читать книгу История электротехники - Коллектив авторов.
Комментарии