Есть идея! - Мартин Гарднер
Шрифт:
Интервал:
Закладка:
3. Имеются фишки трех различных цветов. Пары соседних фишек перемещаются по обычному правилу с тем, чтобы фишки каждого цвета оказались выстроенными подряд. При n = 3 (всего 9 фишек) существует решение в 5 ходов. И в этом, и во всех предыдущих вариантах головоломки предполагается, что после последнего перестроения фишки стоят в ряд «сомкнутым строем» (без пробелов). Если ряд может содержать пробелы, то существует необычное решение всего лишь в 4 хода.
Напрашиваются и другие варианты головоломки. Насколько известно, их никто ранее не предлагал и уж конечно не решал. Например, в каждом из приведенных нами вариантов головоломки за один ход можно перемещать не по две, а по три (и более) соседние фишки.
Что произойдет, если на первом ходу переместить фишку, на втором — 2 фишки, на третьем — 3 фишки и т. д.? Если в ряд выстроены n фишек одного цвета и затем п фишек другого цвета, то всегда ли правильного чередования цветов можно добиться за n ходов?
Дороги, которые мы выбираем
Маленькая Сьюзен в большом затруднении. Дело в том, что по дороге в школу ее то и дело подстерегает скверный мальчишка Станки.
Станки. Эй, Сьюзен! Можно, я пойду с тобой?
Сьюзен. Нет, очень тебя прошу, уйди!
Сьюзен. Я придумала, что мне делать. Буду ходить в школу каждое утро другой дорогой. Тогда Станки ни за что не догадается, где меня можно подстеречь.
На этой карте показаны все улицы между домам Сьюзен и ее школой. Направляясь в школу по намеченному маршруту, Сьюзен идет либо строга на восток, либо на юг.
Здесь вы видите Сьюзен, идущую в школу по другой дороге. Разумеется, ей не хотелось бы удаляться от школы. Сколькими способами можно добраться от дома Сьюзен до школы?
Сьюзен. Хотела бы я знать, сколько различных дорог ведет от моего дома к школе. Подумаем! Сосчитать их, должно быть, не просто. Впрочем… Есть идея! Сосчитать дороги совсем не трудно! Очень даже просто!
Какая идея пришла в голову Сьюзен?
Вот как она рассудила.
Сьюзен. У того перекрестка, возле которого я живу, поставлено на карте число 1: выйти из дома я могу лишь одним способом. У перекрестков, расположенных в одном квартале к востоку и к югу от дома, я поставлю по 1, потому что до каждого из них можно добраться только одним способом.
Сьюзен. У этого перекрестка я поставлю число 2, так как к нему от моего дома ведут 2 различные дороги.
Тут Сьюзен стало ясно, что число у каждого перекрестка равно либо ближайшему числу (если оно одно), либо сумме двух ближайших чисел.
Сьюзен. Еще четыре перекрестка пометила числами. Скоро закончу.
Не поможете ли вы Сьюзен? Не подскажете ли ей, сколько различных дорог ведет от ее дома к школе?
Сколько путей?Три перекрестка на ближайшей вертикали справа следует пометить (сверху вниз) числами 1, 4, 9, а два перекрестка на следующей вертикали — числами 4 и 13. Число 13, стоящее на карте у самого правого нижнего перекрестка, показывает, что Сьюзен может выбрать кратчайшую дорогу в школу 13 различными способами.
Придуманный Сьюзен метод действительно приводит к простому и эффективному алгоритму для определения числа кратчайших путей, ведущих от ее дома к школе. Если бы Сьюзен попыталась вычертить все пути, чтобы затем пересчитать их, то решение оказалось бы весьма громоздким, а при большом числе улиц просто необозримым. Вы сможете лучше оценить эффективность предложенного Сьюзен алгоритма, если вычертите все 13 путей.
Чтобы проверить, насколько глубоко вы усвоили алгоритмы Сьюзен, попробуйте нарисовать сети улиц, имеющие другие конфигурации, и подсчитать число кратчайших путей, ведущих из точки А в точку В. Четыре задачи этого типа представлены на рис. 1. Решать их можно по-разному, например, воспользоваться комбинаторными формулами, но все методы несколько сложнее алгоритма Сьюзен.
Чему равно число кратчайших путей, по которым ладья может перейти из одного углового поля на шахматной доске в другое, диагонально противоположное? Эта задача легко решается, если каждому полю на шахматной доске приписать по числу так же, как Сьюзен приписывала числа перекресткам на карте города. Ладья ходит только по горизонтали и вертикали. Следовательно, кратчайший путь из любой клетки в любую другую состоит в преодолении разделяющего клетки расстояния по горизонтали и по вертикали. Если числа расставлены верно (см. рис. 2), то они указывают число кратчайших путей, ведущих из нижнего угла в любое поле. Например, поле в правом верхнем углу помечено числом 3432. Следовательно, ладья может перейти с поля, стоящего в левом нижнем углу доски на диагонально противоположное поле 3432 кратчайшими путями.
Разрезав шахматную доску по диагонали и повернув половину, мы получим треугольник, изображенный на рис. 3. Числа, стоящие в клетках любого ряда, указывают число кратчайших путей, ведущих в них из самой верхней клетки. Расставленные в клетках числа образуют знаменитый арифметический треугольник Паскаля, и это не удивительно: алгоритм для подсчета числа кратчайших путей, ведущих от вершины, в точности совпадает с процедурой построения треугольника Паскаля. Этот изоморфизм позволяет считать исходную головоломку прологом к изучению необычайно разнообразных и красивых свойств треугольника Паскаля.
Треугольник Паскаля позволяет находить биномиальные коэффициенты (то есть коэффициенты при любом члене разложения (a + b)n, где n — любое целое число) и решения многих задач элементарной теории вероятностей. Заметим, что на рис. 3 число кратчайших путей, ведущих из вершины треугольника в самую левую или самую правую клетку нижнего ряда, равно 1 и что по мере приближения к середине ряда число кратчайших путей возрастает. Возможно, вам случалось видеть одно из устройств, действие которых основано на свойствах треугольника Паскаля: по наклонной доске, в которую в шахматном порядке вбиты колышки, скатываются шарики и скапливаются в отсеках под колышками нижнего ряда. Распределение шариков имеет форму колоколообразной кривой, а число шариков в каждом отсеке пропорционально соответствующему биномиальному коэффициенту, потому что число кратчайших путей, ведущих в каждый отсек, в точности совпадает с определенным биномиальным коэффициентом.
Алгоритм, предложенный Сьюзен, как нетрудно понять, остается в силе и для трехмерных сетей, в которых ячейки («кварталы») имеют форму прямоугольных параллелепипедов. Представьте себе куб с длиной ребра 3 единицы, разделенный на 27 единичных кубов. Будем считать его пространственной шахматной доской и в угловую «клетку» поместим ладью, которая может двигаться параллельно любому из ребер куба. Сколькими способами ладью можно перевести кратчайшим путем в клетку, расположенную на другом конце диагонали куба?
Перепутали
В одном родильном доме по чьему-то недосмотру перепутали карточки с именами 4 младенцев. У двух детей оказались их карточки, а карточки остальных двух малюток были разложены неправильно.
Сколько существует различных вариантов путаницы?
Подсчитать число вариантов совсем нетрудно, если составить таблицу. Оказывается, что карточки с именами 2 детей из 4 можно перепутать лишь 6 различными способами.
Предположим теперь, что после того, как карточки перепутали, у трех детей оказались карточки с их именами, а одному младенцу досталась карточка с чужим именем. Сколько вариантов путаницы существует в этом случае?
Как бы вы стали решать эту задачу? Составили бы таблицу? А может быть, у вас есть идея, как решить эту задачу проще?
«Птичка в клетке»Многим кажется, что ответить на вопрос задачи довольно трудно. Те, кто так думает, ошибочно полагают, будто перепутать карточки так, чтобы 3 младенцам из 4 достались карточки с их именами, можно многими способами. Но стоит лишь обратиться к принципу «птичка в клетке» и сформулировать задачу несколько иначе, как ответ сразу становится очевидным. Предположим, что перед нами 4 клетки и на каждой из них укреплена карточка с названием одного из 4 предметов. Если 3 предмета попали в клетки со своими названиями, то четвертому предмету не остается ничего другого, как попасть в клетку, к которой прикреплена карточка с его названием. Таким образом, мы имеем дело лишь с одним вариантом: каждый из 4 предметов оказывается в своей клетке.
Во многих книгах по занимательной математике встречается следующая задача, в которой речь идет лишь о 3 предметах. На столе расставлены 3 закрытые коробки. В одной из них находятся 2 монеты по 5 центов, в другой — 2 монеты по 10 центов и в третьей — 1 пятицентовая и 1 десятицентовая монета. На крышках коробок написано: 10 центов; 15 центов и 20 центов, но ни одна из надписей не соответствует содержимому коробки. Предположим, что из коробки с надписью «15 центов» (напомним, что надпись не соответствует содержимому коробки) извлекли 1 монету и положили на стол перед коробкой. Можно ли, взглянув на эту монету, сказать, какие монеты находятся в каждой из 3 коробок?