Битва за звезды-2. Космическое противостояние (часть I) - Антон Первушин
Шрифт:
Интервал:
Закладка:
Таким образом на всех режимах обеспечивалось постоянство конфигурации орбитального самолета.
После снижения до высоты 50 километров космоплан переходил в планирующий полет. Как только его скорость становилась ниже звуковой, открывался воздухозаборник в основании киля и набегающим потоком воздуха запускался турбореактивный двигатель. В отличие от спускаемых аппаратов космических кораблей, пилот космоплана мог совершить горизонтальный маневр до 800 километров от траектории спуска.
Штатная посадка осуществлялась на четырехстоечное лыжное шасси, убираемое в боковые ниши корпуса (передние опоры) и в донный срез фюзеляжа (задние опоры).
Стойки шасси расставлены были довольно широко и должны были обеспечить посадку практически на любой грунт.
При проектировании аэрокосмической системы конструкторы исходили из потребных 20–30 полетов в год.
С технической точки зрения работы шли успешно.
В 1967 году в отряде космонавтов была сформирована rpyппа, которой предстояло пройти подготовку к полетам на «Спирали». В нее вошли уже летавший в космос Герман Титов и еще только готовившиеся к космическим полетам Анатолий Филипченко и Анатолий Куклин.
По расчетам, «Спираль» сулила стать гораздо выгоднее существовавших в то время ракетных комплексов. Масса полезной нагрузки системы составляла 12,5 % от ее стартовой массы против 2,5 % у «Союза». У 320-тонного «Союза» на Землю возвращался 2,8-тонный спускаемый аппарат (0,9 %), а у «Спирали» повторно использовались 85 % конструкции, к тому же ей не требовался космодром.
Изделие «105.11» («Лапоть»)
В связи с большой сложностью программы «Спираль» в эскизном проекте предусматривалась поэтапная отработка всей системы.
На первом этапе предусматривалось создание пилотируемого аналога орбитального самолета с ракетным двигателем, стартующего с самолета-носителя «Ту-95». Самолет-аналог не должен был иметь массо-габаритного и приборного сходства с ОС. Цель испытаний — оценка основных аэродинамических и силовых параметров ОС в условиях, близких к космическому полету (максимальная высота полета — 120 километров, максимальная скорость полета — от 6 до 8 Махов) и входу в атмосферу. Планировалось изготовить и испытать три самолета-аналога. Согласно плану первый полет на дозвуковой скорости должен был состояться в 1967 году, полет на сверхзвуке и гиперзвуке — в 1968 году. Стоимость работ — 18 миллионов рублей. Этот этап по сути являлся аналогом американского проекта «Х-15», но в отличие от последнего не был реализован в металле.
На втором этапе предусматривалось создание одноместного экспериментального пилотируемого орбитального самолета («ЭПОС»), предназначенного для натурной отработки конструкции и летного подтверждения характеристик основных систем ОС. Запуск «ЭПОС» собирались осуществить с помощью ракеты-носителя «Союз», при этом экспериментальный ОС должен был выйти на орбиту высотой 150–160 километров и наклонением 51°, совершить два или три витка, а затем выполнить спуск и посадку, как полноразмерный космоплан.
Планировалось изготовить и запустить четыре самолета в беспилотном (1969 год) и пилотируемом (1970 год) вариантах.
Стоимость работ — 65 миллионов рублей.
Параллельно с работами над орбитальным самолетом предполагалось создать и испытать полноразмерный гиперзвуковой самолет-разгонщик «50–50» с турбореактивными двигателями «РД-39-300», работающими на керосине (летные испытания четырех самолетов — в 1970 году, стоимость работ — 140 миллионов рублей). После накопления данных по аэродинамике и эксплуатации самолета на гиперзвуковой скорости планировался переход ГСР на водородное топливо, для чего необходимо было изготовить и испытать еще четыре самолета. Летные испытания ГСР на водороде должны были состояться в 1972 году, стоимость работ — 230 миллионов рублей.
На испытания полностью укомплектованной системы, состоящей из ГСР и ОС с ракетным ускорителем (все двигатели работают на керосине), отводился 1972 год.
После всесторонней отработки и проверки бортовых систем в 1973 году планировалось проведение летных испытаний полностью укомплектованной воздушно-космической системы с двигателями, работающими на водороде, и пилотируемым орбитальным самолетом.
В 1966 году к теме «Спираль» подключился Центральный аэрогидродинамический институт (ЦАГИ), где в то время директором был Владимир Мясищев и велись исследования аэродинамики летательных аппаратов на гиперзвуковых ско ростях.
ЦАГИ поддержал вышеописанную программу в своем официальном заключении, составленном в апреле того же года.
Бесчисленные испытания, начиная с лабораторных исследований, продувок моделей и аналогов в аэродинамических трубах ЦАГИ и кончая их стендовыми отработками применительно к разным режимам и этапам полета, позволили с высокой степенью достоверности определить аэродинамические характеристики планера орбитального самолета. Они же стали основой для разработчиков различных систем «ЭПОСа», создаваемого в ОКБ Микояна.
По первоначальному плану летных испытаний пилотируемых аналогов космоплана конструкторы собирались построить три самолета «ЭПОС»: дозвуковой аналог «105.11» для имитации атмосферного участка захода на посадку при возвращении с орбиты, сверхзвукового аналог «105.12» и гиперзвуковой аналог «105.13».
Для работ по этой теме из состава филиала в Дубне собрали группу в 150 человек, а ОКБ-155-1 выделили в самостоятельную организацию, ныне известную как конструкторское бюро «Радуга».
К сожалению, до летных испытаний удалось довести только первую из названных машин. Хотя самолет «105.12» был изготовлен полностью, он так и не принимал участия в испытаниях, а у «105.13» успели изготовить только фюзеляж.
Дело в том, что, несмотря на строгое технико-экономическое обоснование проекта, руководство страны быстро утратило интерес к теме «Спираль», бросив основные силы на лунную гонку с американцами. Сроки выполнения этапов программы оказались сорваны и над «Спиралью» нависла угроза закрытия.
Последнюю точку в ее истории мог бы поставить министр обороны Андрей Гречко, который, ознакомившись в начале 70-х годов с данными проекта, выразился ясно и однозначно: «Фантазиями мы заниматься не будем».
Однако новый импульс программе придало известие о том, что в США начаты работы над созданием космического корабля самолетной схемы «Спейс Шаттл» («Space Shuttle»). Благодаря усилиям министра авиапромышленности Алексея Минаева (выходца из ОКБ Микояна) было принято решение о проведении серии испытаний дозвукового аналога «105.11». Достроенный в 1974 году аналог «105.11» был выполнен по схеме «бесхвостка» с несущим корпусом, низкорасположенным треугольным крылом, однокилевым оперением, одним двигателем в хвостовой части фюзеляжа и четырехопорным шасси. Габариты экспериментального самолета были следующие: длина самолета — 8,5 метра, размах крыла — 6,4 (7,4) метра, высота — 3,5 метра, полный вес — 4220 килограммов.
Несущий фюзеляж имел стреловидную в плане форму (угол стреловидности — 78°) и сечения с закругленной верхней и практически плоской нижней частью. Фюзеляж состоял из четырех частей: носового отсека оборудования с кабиной, фермы с рамами, панелей с воздухозаборником ТРД и нижнего теплостойкого экрана.
Основной частью фюзеляжа является ферма с рамами из стали ВНС-2. В этом конструкция была схожа с американским «Х-20». Ферменную конструкцию выбрали из условий обеспечения максимального объема для размещения двигателя, топлива и оборудования.
В нижней центральной части расположили топливный бак-отсек, который входил в силовую часть фермы. В хвостовой части был размещен турбореактивный двигатель, воздухозаборник которого снабжен открываемой при работе двигателя створкой. Отсек оборудования с кабиной — обычной сварной конструкции из листовой стали ВНС-2 — соединялся с фермой пироболтами, образуя спасаемую капсулу. Пилот попадал в кабину через верхний люк. Панели и воздухозаборник ТРД (обычной дюралевой конструкции) закрывали ферму и крепились к ней на болтах. Экран, защищающий ферму от термодинамического нагрева и представляющий собой сварную панель из листовой стали с набором продольных и поперечных профилей, устанавливался снизу. С внутренней стороны экран покрывали термоизолирующим материалом.
Консоли крыла, имеющие угол стреловидности по передней кромке 55°, крепились к фюзеляжу, но могли поворачиваться на угол до 30° вверх в зависимости от режима полета. Привод поворота консолей крыла — электрический с червячным механизмом. Крыло снабжено элеронами для управления по крену. Вертикальное оперение включало киль площадью 1,7 м2 с углом стреловидности по передней кромке 60° и руль направления. На верхней поверхности хвостовой части фюзеляжа были расположены балансировочные щитки, отклоняемые вверх. Система управления самолетом — ручная от традиционной ручки и педалей «самолетного» типа.