Категории
Самые читаемые
onlinekniga.com » Научные и научно-популярные книги » Физика » Скрытая реальность. Параллельные миры и глубинные законы космоса - Брайан Грин

Скрытая реальность. Параллельные миры и глубинные законы космоса - Брайан Грин

Читать онлайн Скрытая реальность. Параллельные миры и глубинные законы космоса - Брайан Грин

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 50 51 52 53 54 55 56 57 58 ... 110
Перейти на страницу:

Таблица 7.1. Каждое целое число спарено с чётным числом, и наоборот, откуда возникает предположение, что их количества совпадают

Таблица 7.2. Каждое целое число спарено с дважды чётным числом, в результате чего остаётся бесконечный набор чётных чисел без пары. Отсюда возникает предположение, что чётных чисел больше, чем целых

Можно даже убедить себя, что чётных чисел больше чем целых. Представьте, что в качестве альтернативного варианта на викторине предлагается учетверить деньги в каждом конверте так, что в первом окажется 4, во втором 8, в третьем 12 долларов и так далее. Так как число конвертов опять не изменилось, возникает предположение, что количество целых чисел из первого варианта равно количеству чисел кратных 4 из второго варианта (табл. 7.2). Однако такое составление пар, когда каждое целое число сопоставляется числу кратному 4, даёт бесконечный набор чётных чисел, оставшихся без пары — 2, 6, 10 и так далее, — что наводит на мысль, что чётных чисел больше чем целых.

С одной стороны, количество чётных чисел меньше чем целых. С другой стороны, эти количества равны друг другу. С третьей стороны, чётных чисел больше чем целых. И выходит, что нет какого-то одного правильного вывода. Абсолютного ответа на вопрос, какой из этих бесконечных наборов больше, попросту не существует. Получаемый вами результат зависит от способа сравнения.{65}

Здесь возникает головоломка для теорий с мультивселенными. Как определить, что тот или иной тип вселенных имеет больше галактик и более расположен к возникновению жизни, если число рассматриваемых вселенных бесконечно? Мы столкнёмся с точно такими же двусмысленностями, как были описаны выше, если физические соображения не продиктуют, что взять за основу при определении способа сравнения. Теоретики сформулировали несколько способов сравнения, аналогичных составлению пар в приведённых выше таблицах, которые возникают в той или иной физической модели, — однако определённой процедуры, с которой согласны все, пока не разработано. Разные подходы приводят к разным результатам, подобно примерам с бесконечными наборами чисел. Согласно одному способу сравнения, преимущество имеют вселенные с одним набором свойств; согласно другому способу — другие.

Такой произвол сильно влияет на определение типичных или средних свойств в данной мультивселенной. Физики называют это проблемой измерения. Смысл этого математического термина вполне отражён в его названии. Необходимо иметь способ измерения размеров различных бесконечных наборов вселенных. Именно эта информация необходима для того, чтобы делать предсказания. Именно эта информация необходима, чтобы разобраться, насколько вероятнее, что мы находимся во вселенной одного типа, а не другого. Пока не будет найден фундаментальный принцип для сравнения бесконечных наборов вселенных, мы не сможем математически предсказывать результаты наблюдений и экспериментов, проводимых типичными обитателями мультивселенной, то есть нами. Поэтому нам не удастся избежать решения проблемы измерения.

Что ещё волнует скептиков

Я посвятил проблеме измерений отдельный раздел, не только потому что она является огромным препятствием на пути получения предсказаний, но также потому, что из неё вытекают другие проблемные следствия. В главе 3 было объяснено, почему инфляционная теория стала de facto космологической парадигмой. Крайне высокий темп расширения в течение первых мгновений жизни нашей Вселенной привёл к тому, что области, удалённые друг от друга в настоящем, могли быть связаны друг с другом в прошлом, что объясняет общую температуру, обнаруженную в современных экспериментах; быстрое расширение сглаживает также любую пространственную кривизну, что придаёт пространству плоскую форму, которая согласуется с наблюдениями; наконец, такое расширение превращает квантовые флуктуации в мельчайшие температурные колебания по всему пространству, которые наблюдаются в реликтовом излучении и которые важны для образования галактик. Эти достижения неоспоримы.{66} Однако если инфляция продолжается вечно, это может свести успехи на нет.

Когда в игру вступают квантовые процессы, лучшее, что можно сделать, — это предсказать вероятность одного результата относительно другого. Физики-экспериментаторы, понимая всю важность этого, вновь и вновь проводят эксперименты, набирая целую гору данных для статистической обработки. Когда квантовая механика предсказывает, что один результат в 10 раз вероятнее другого, полученные данные должны очень точно отражать это соотношение. Вычисления реликтового излучения, соответствие которого наблюдательным данным является наиболее убедительным аргументом в пользу инфляционной теории, основываются на квантовых флуктуациях, и поэтому тоже имеют вероятностный характер. Однако в отличие от лабораторных экспериментов эти вычисления нельзя проверить, запуская Большой взрыв снова и снова. Тогда как их интерпретировать?

Если в результате теоретического анализа получается, что, скажем, с вероятностью 99 процентов данные по реликтовому излучению имеют один вид, а не другой, и если более вероятный результат согласуется с нашими наблюдениями, то такие данные рассматриваются как серьёзный аргумент в пользу теории. Логика в том, что если некоторый набор вселенных возник на основе одних и тех же физических законов, то теория утверждает, что примерно 99 процентов таких вселенных будут похожи на то, что мы наблюдаем, а 1 процент будет иметь значительные отклонения.

Теперь если бы в инфляционной мультивселенной имелся конечный набор вселенных, то можно было бы прямо утверждать, что число нетипичных вселенных, в которых квантовые процессы привели бы к данным, не соответствующим ожидаемым, останется относительно малым. Однако, когда набор вселенных бесконечен, как в инфляционной мультивселенной, интерпретация чисел становится значительно более трудной задачей. Что такое 99 процентов от бесконечности? Бесконечность. А что такое 1 процент от бесконечности? Тоже бесконечность. Какая из них больше? От нас требуется сравнить два бесконечных набора. А как мы видели, даже когда кажется, что один набор больше другого, ответ зависит от используемого нами метода сравнения.

Тогда скептик делает вывод, что при вечной инфляции становятся условными сами предсказания, на которых зиждется наша уверенность в теории. Любой возможный результат, допустимый квантовыми вычислениями, каким бы маловероятным он ни был — 0,1 процента квантовой вероятности, 0,0001 процента квантовой вероятности или 0,0000000001 процента квантовой вероятности, — будет реализован в бесконечном числе вселенных просто потому, что любое из этих чисел, умноженное на бесконечность, равно бесконечности. Без фундаментального предписания того, как сравнивать бесконечные наборы, мы скорее всего не сможем сказать, что один набор вселенных больше другого, а потому он является наиболее вероятным типом наблюдаемых вселенных — мы теряем способность делать определённые предсказания.

Оптимист делает вывод, что замечательное согласие квантовых вычислений в инфляционной космологии с имеющимися данными (рис. 3.5) должно отражать какую-то глубокую истину. При конечном наборе вселенных и наблюдателей глубокая истина состоит в том, что вселенные, в которых данные отклоняются от квантовых предсказаний — те, которые составляют 0,1 процента квантовой вероятности, или 0,0001 процента квантовой вероятности, или 0,0000000001 процент квантовой вероятности, — встречаются действительно редко, и именно поэтому типичные обитатели мультивселенной, как мы с вами, не попадают ни в одну из них. При бесконечном наборе вселенных, заключает оптимист, глубокая истина должна быть в том, что аномальные вселенные встречаются опять-таки редко, однако нам ещё предстоит выяснить, как это происходит. Ожидается, что однажды мы найдём меру, определённый способ, который позволит сравнивать различные бесконечные наборы вселенных, и при этом доля вселенных, возникающих благодаря редким квантовым отклонениям, будет мала по сравнению с теми, квантовая вероятность которых более велика. Достижение этой цели остаётся колоссально трудной задачей, но большинство исследователей в этой области убеждены, что согласие теоретических выводов и полученных данных, представленное на рис. 3.5, означает, что когда-нибудь мы добьёмся успеха.{67}

Нерешённые вопросы и мультивселенные:

Могут ли мультивселенные давать предсказания, которые нельзя получить другими способами?

Вы, безусловно, заметили, что даже в самых оптимистичных планах предполагается, что предсказания на основе мультивселенного подхода будут иметь другой характер, отличный от того, что мы традиционно ожидаем от физики. Прецессия перигелия Меркурия, магнитный дипольный момент электрона, энергия, выделяемая при расщеплении ядра урана на барий и криптон, — всё это примеры предсказаний. Они основаны на тщательных математических вычислениях, опирающихся на цельную физическую теорию, и дают в конце точные, проверяемые числа. Эти числа были подтверждены экспериментально. Например, вычисления дают, что магнитный момент электрона равен 2,0023193043628; измерения показывают, что он равен 2,0023193043622. С точностью до малых ошибок, присущих и первым и вторым, эксперимент таким образом подтверждает теорию с точностью 1 к 10 миллиардам.

1 ... 50 51 52 53 54 55 56 57 58 ... 110
Перейти на страницу:
На этой странице вы можете бесплатно читать книгу Скрытая реальность. Параллельные миры и глубинные законы космоса - Брайан Грин.
Комментарии