Вселенная, жизнь, разум - Иосиф Шкловский
Шрифт:
Интервал:
Закладка:
Еще недавно большинство астрономов считали, что так называемые «полярные шапки» Марса суть не что иное, как иней, покрывающий большие области около полюсов планеты. Однако в настоящее время вся совокупность данных наблюдений говорит о том, что сезонные «полярные шапки» — это, главным образом, сухой лед, т. е. затвердевшая углекислота CO2. Так как ось вращения Марса наклонена к плоскости его орбиты почти на такой же угол, что и Земля, там наблюдается смена времен года. Вообще говоря, климат Марса отличается большой суровостью. Средняя температура поверхности этой планеты приблизительно на 40 К ниже, чем на Земле. В течение суток температура почвы колеблется на 60–80 К. Амплитуда годичных колебаний в полярных областях достигает 100–120 К, в то время как в экваториальных она равна 30 К. Температура полярных областей достигает зимой -120 °C.
Следует иметь в виду, что в отдельных областях поверхности Марса микроклимат может существенно отличаться в лучшую сторону от описанных выше весьма суровых «средних» условий. Например, благодаря вулканической активности там могут быть области с более высокой температурой и сравнительно большим содержанием водяных паров. В таких областях условия для развития жизни могут быть, конечно, более благоприятными.
В 1964 г. Синтон и Стронг опубликовали результаты наблюдений Марса в инфракрасных лучах (длины волн 7—13 мкм). На этих волнах наблюдается в основном тепловое излучение поверхности планеты, в то время как на более коротких волнах Маре светит преимущественно отраженным солнечным излучением.
Наблюдения Синтона и Стронга производились при помощи большого телескопа обсерватории Маунт Паломар с зеркалом диаметром в 5 м. Это дало возможность исследовать инфракрасное излучение от отдельных участков поверхности планеты. По интенсивности инфракрасного излучения можно было вычислить температуру соответствующих областей в разное время марсианских суток. Температуры поверхности Марса (°C) для разных широт и моментов марсианских суток приведены в табл. 9, из которой видна огромная разница между утренней и дневной температурами. Интересно, что около местного марсианского полдня температура поверхности планеты достигает +28 °C. В то же время температура воздуха на Марсе, даже у самой его поверхности, очень низка и всегда ниже нуля. Уже на высоте около 15 км температура падает даже в экваториальных областях до -100 °C.
Таблица 9Новую эру в исследованиях Марса открыли американские и советские автоматические межпланетные станции «Маринер» и «Марс» (рис. 61, не сканировался), которые, начиная с 1962 г., планомерно посылались к Марсу. Впервые автоматическая станция «Маринер-4» передала на Землю фотографии поверхности этой планеты, полученные со сравнительно близкого расстояния (~ 10000 км). Эти фотографии выявили на поверхности Марса огромное количество кратеров самых различных размеров. Любопытно отметить, что только один астроном на Земле довольно давно предсказал, что поверхность Марса должна быть покрыта кратерами. Это был выдающийся эстонский астроном Эпик, работавший в Ирландии. Однако на это предсказание не было обращено должного внимания. Для всего «астрономического мира» открытие кратеров на поверхности Марса было полной неожиданностью…
Важные результаты в съемках поверхности Марса были достигнуты в конце 1971 г. американской автоматической станцией «Маринер-9». Поначалу съемкам сильно мешала огромной силы пылевая буря, на много недель закрывшая непроницаемой мглой поверхность планеты. Это дало повод организаторам полета «Маринер-9» для веселых шуток (рис. 62).
Когда буря утихла, «Маринер-9» выполнил высококачественную «космофотосъемку» поверхности Марса, охватывающую всю его поверхность. Некоторые из переданных на Землю фотографий поверхности Марса приведены на рис. 63 а-в (не сканировались).
# Практически одновременно с «Маринером-9» работал «Марс-3» — советский искусственный спутник планеты Марс. На нем проводились фотометрические исследования поверхности и атмосферы в разных диапазонах. #
В 1974 г. четыре советские автоматические межпланетные станции — «Марс-4», «Марс-5», «Марс-6» и «Марс-7» — продолжили программу изучения Марса. В результате этих исследований природа марсианской атмосферы значительно прояснилась. Приводим основные результаты этих измерений, не останавливаясь на технических подробностях. Мы сюда включили также результаты наземных наблюдений, выполненные самыми совершенными методами на крупнейших телескопах.
Установленные на советских автоматических станциях «Марс-3» и «Марс-5» «индикаторы влажности» — особая аппаратура, чувствительная к инфракрасным лучам, поглощаемым водяными парами, — позволили надежно найти распределение паров H2O над поверхностью Марса. Выяснилось, что это распределение весьма неравномерно, колеблясь от неизмеримо малого значения до 100 мкм осажденной воды.
Среднее значение полного давления марсианской атмосферы близко к 0,006 земного атмосферного давления (около 5 мм рт. ст.). Эта величина оказалась значительно ниже принимавшегося раньше значения. Вообще следует заметить, что на протяжении последних двух десятилетий наблюдалась тенденция к непрерывному снижению давления марсианской атмосферы. Так, например, известный исследователь Марса де Вокулер около 30 лет назад вывел значение для давления атмосферы Марса 65 мм рт. ст. По наблюдениям, выполненным во время противостояния Марса в 1963 г., было найдено, что давление на Марсе составляет только 20 мм рт. ст. И вот сейчас оно принимается еще в 4 раза меньшим! Такое низкое давление достигается на Земле только на высоте 30 км над уровнем моря.
Следует, однако, заметить, что на поверхности Марса наблюдаются огромные перепады высот, до 25 км. По этой причине атмосферное давление на поверхности Марса сильно зависит от высоты того или иного участка. Есть места (впадины), где атмосферное давление почти вдвое больше среднего, есть и такие высокогорные области, где давление вдвое меньше среднего. Конечно, удивительного в этом нет ничего. Вообразим себе, что у нас на Земле исчез мировой океан. Тогда разность высот между океанскими впадинами и высокогорными плато была бы 7—10 км. Конечно, разница в высоте между вершинами Гималаев и отдельными узкими провалами в океане типа Филиппинской или Марианской впадин составляет около 20 км. Но это, так сказать, «экстремальные» значения перепадов высот. Очень возможно, что на Марсе будут найдены разные малые области с еще большей разностью высот. Но в целом степень «изрытости» поверхности Марса (в смысле отклонения от идеальной сфероидальной формы) значительно больше, чем на Земле, что, по-видимому, объясняется меньшим значением силы тяжести на этой планете.
Специальный интерес представляет строение верхней атмосферы Марса. На высоте около 300 км основной составляющей атмосферы является атомарный кислород. Несомненно, это объясняется фотодиссоциацией углекислого газа (плотность второго и более тяжелого ее продукта, CO, падает быстрее с высотой, чем плотность O). Начиная с высоты около 400 км преобладающей компонентой марсианской атмосферы становится атомарный водород H. На этой высоте в каждом кубическом сантиметре содержится около 10000 атомов водорода. Следует ожидать, что здесь содержится примерно такое же количество гелия, однако на расстояниях в несколько тысяч километров атмосфера должна уже состоять практически из чистого водорода. Чисто водородная внешняя атмосфера Марса прослеживается вплоть до огромных расстояний в 20000 км, образуя своего рода «корону». Аналогичная водородная «корона» окружает Землю, а также Венеру. Водородная корона Марса была исследована на американских и советских автоматических станциях с помощью специальных приемников, чувствительных к излучению в резонансной линии водорода «Лайман альфа». Это излучение возникает при рассеянии солнечных ультрафиолетовых квантов атомами водорода, находящимися в верхней атмосфере Марса. По той же причине эту линию излучают атомы водорода в верхней атмосфере Земли и Венеры.
Так же, как и в случае верхней атмосферы Земли, атомы водорода в верхней атмосфере Марса должны «улетучиваться» (или, как говорят, «диссипировать») в межпланетное пространство. Поэтому должен быть непрерывно действующий источник их пополнений.
Таким источником может быть только диссоциация водяных паров в более глубоких слоях марсианской атмосферы. Оказывается, что даже того скромного количества паров H2O, которое там имеется, вполне достаточно для этой цели.
Таким образом, климат Марса и его атмосфера не очень-то благоприятствуют развитию жизни на нем, хотя, конечно, не исключают ее возможности. Уместно в этой связи напомнить, что в Антарктиде люди живут при температурах марсианских полярных областей. Там зарегистрирована самая низкая температура на Земле –82 °C. Конечно, человек в Антарктиде создает свою искусственную биосферу. Все же возможности приспособлений организмов к суровым природным условиям весьма велики. Следовательно, сама по себе суровость климатических условий на Марсе не исключает возможности наличия на нем жизни.