Планиверсум. Виртуальный контакт с двухмерным миром - Александр Дьюдни
Шрифт:
Интервал:
Закладка:
Взяв за основу эту базовую информацию и решив двухмерное уравнение Шредингера, Пол Рейзер, физик из Глочестера, штат Массачусетс, получил приведенную ниже схему плотности электронного облака для двухмерного атома водорода. Затененные области показывают вероятность того, что здесь может находиться электрон; чем гуще закрашена область, тем выше вероятность, а чем она бледнее, тем вероятность ниже. В белых областях электрон не окажется никогда. У данного атома главное квантовое число n = 3, а квантовое число орбитального углового момента l = 1. В самом центре атома расположено крошечное ядро.
Каждый атом или частица в Планиверсуме вращается или по или против часовой стрелки. В нашей вселенной мы можем преобразовать один атом в другой, просто поверну» его на 180 градусов. Но проделать эту же операцию с двухмерными атомами невозможно. Это будут два различных типа атомов, и мы можем лишь догадываться о том, какие последствия вытекают из этого обстоятельства.
Еще одно любопытное различие между нашей все ленной и Планиверсумом заключается в том, что в двухмерном мире полностью отсутствует сила магнитного притяжения. Хотя на Арде существуют магниты, они не отталкиваются и не притягиваются друг к другу. Взаимодействуют они только с электронами. Многие земные физики, в том числе покойный Ричард Лапидус из Стивенсовского университета в Хобокене, Нью-Джерси, и Яков Штейн из Иерусалима, изучили проявления такого электромагнитного поля и получили подходящие варианты уравнений Максвелла. К примеру, если допустить, что в Планиверсуме существуют электромагнитные волны, то представление их в таком виде, как показано на рисунке, выглядит совершенно корректным и совпадает с описаниями пуницланских ученых.
Мы можем представить себе электромагнитные волны в Планиверсуме как последовательность электрических полей, которые движутся, скажем, слева направо. На каждое электрическое поле накладывается магнитное поле. В каждой конкретной точке напряженность электрического поля достигает пикового значения, а затем затухает и меняет направление своего вектора на противоположное. Электрические поля с векторами напряженности, направленными вверх, сопровождаются магнитными полями типа O, а электрические поля с векторами напряженности, направленными вниз, сопровождаются магнитными полями типа X. Естественно, напряженность магнитных полей колеблется вместе с напряженностью электрических.
В двухмерном вакууме такая электромагнитная волна будет распространяться со скоростью света. При удалении от источника волны станут затухать точно так же, как затухает сила притяжения.
Мы знаем, что в двухмерном мире гравитация ведет себя не совсем так, как в нашем. Как уже объяснялось в разделе «Рассеивание энергии», сила притяжения в Планиверсуме ослабляется обратно пропорционально расстоянию от источника гравитации, тогда как в нашем мире она ослабляется с коэффициентом 1/d2. Другими словами, в Планиверсуме сила притяжения гораздо медленнее уменьшается с расстоянием, чем в нашей вселенной.
У этого правила есть одно странное следствие, и заключается оно в том, что космический корабль никогда не сможет вырваться из гравитационного поля двухмерной планеты. На Земле космическому кораблю достаточно развить определенную скорость, которая называется второй космической скоростью, чтобы преодолеть гравитационное притяжение нашей планеты. Как только эта скорость будет достигнута, корабль сможет выключить двигатели и двигаться по инерции дальше в космос. На Арде второй космической скорости не существует. Как бы быстро ни летел космический корабль и как бы далеко ни удалился он от Арде, как только он выключит двигатели, то сразу же начнет замедляться, остановится и начнет падать обратно.
Эта особенность двухмерной гравитации объясняет, почему при исследовании космоса пуницлане никогда не пытались удалиться от Арде. Все это время они ограничивались орбитальными полетами. Но если им удастся приблизиться к планете Нагас, они могут достичь точки, в которой притяжение Нагаса окажется сильнее, чем притяжение Арде.
Хотя я совершил ужасную ошибку, подбросив физику Тба Шрин идею теории относительности, сам я понятия не имею, что за теорию она в итоге может открыть. Как ни странно, если верить нашей теории относительности, то в Планиверсуме вообще не может быть гравитации! На этот факт любезно указал астрофизик Ричард Готт из Принстонского университета. Связано это с тем, что согласно теории Эйнштейна, тензор энергии импульса и Риманов тензор кривизны в Планиверсуме будут иметь одно и тоже количество компонент; то есть можно сказать, что для гравитации там просто не останется места.
И все же гравитация существует! Единственный намек на разрешение этого парадокса предоставил нам Карел Кучар из Университета штата Юта, который указал, что внутри материального поля обязана быть гравитация. Возможно, когда-нибудь ардийские ученые откроют существование скрытой массы, и это приведет их к таким же научным спорам, как и нас, землян.
ХимияВ этой области у нас гораздо меньше теорий, чем в любой другой. Хотя мы получили возможный вариант элементарной таблицы, у нас слишком мало информации о двухмерных химических соединениях и о химии вообще.
Пуницланские названия химических элементов произнести невозможно. Однако, по мнению химика Эрнеста Робба из Стивенсовского университета, мы вправе подставить в приведенную ниже таблицу земные названия многих химических элементов.
Например, элемент С (углерод) расположен в вредней части второго ряда пуницланской таблицы, там же, где и наш атом углерода. Более того, в геометрическом смысле двухмерный углерод с тремя валентными электронами очень похож на наш углерод с четырьмя валентными электронами. В Планиверсуме молекула СН3 будет иметь форму треугольника, а в нашей вселенной молекула СН4 имеет форму тетраэдра; схемы таких молекул приведены ниже. Двухмерный метан может быть очень похож на наш аммиак.
Как и в нашей периодической таблице, горизонтальное положение элемента соответствует количеству электронов в каждой оболочке двухмерного атома. В атоме двухмерного водорода (H) всего один электрон, а в атоме гелия (Не) — два. Два электрона заполняют всю внутреннюю электронную оболочку, как в нашем мире, так и в Планиверсуме, но на этом сходство заканчивается. В следующем ряду нашей таблицы содержатся восемь элементов, потому что следующая электронная оболочка в нашем мире может включать в себя до восьми электронов. Но следующая электронная оболочка двухмерного атома может включать в себя не больше шести электронов.
(adsbygoogle = window.adsbygoogle || []).push({});