Многоликий солитон - Александр Филиппов
Шрифт:
Интервал:
Закладка:
Как же действует этот удивительный механизм, превращающий беспорядочные и многообразные раздражения, поступающие от внешнего мира, в стройные последовательности строго одинаковых уединенных волн? Нервный импульс распространяется совсем не так, как электрический ток по проводам. Нервное волокно слишком плохой проводник! «Тонкое нервное волокно длиной 1 м имеет примерно такое же электрическое сопротивление, как медная проволока 22-го калибра при длине 1,6•1010 км, что почти в 10 раз больше расстояния между Землей и Сатурном. Инженер-электрик был бы в большом затруднении, если бы его попросили установить связь в Солнечной системе, используя обычный кабель» (А. Ходжкин).
Простейшее волокно состоит из сердцевины, заключенной в оболочку (мембрану) и погруженной в наружную плазму (рис. 7.10).
Внутренняя и наружная плазмы сильно отличаются по составу. Снаружи плазма содержит избыток ионов натрия (Na+) и хлора (Cl-), образовавшихся при диссоциации обычной поваренной соли NaCl. Внутри больше ионов калия (К+) и отрицательно заряженных ионов органических молекул. Мембрана проницаема для ионов Na+, К+ и Cl-, но не пропускает большие органические молекулы. В спокойном состоянии все процессы проникновения ионов через мембрану уравновешены так, что внутренняя часть волокна содержит избыток отрицательных ионов, и электрическое напряжение между внутренней и внешней плазмами равно примерно 50 мВ. При раздражении нерва достаточно большим внешним импульсом мембрана начинает пропускать внутрь ионы Na+ и в месте раздражения напряжение быстро меняется на противоположное. В этот процесс вовлекаются соседние участки мембраны, так что начинает распространяться импульс напряжения, изображенный в правой части рис. 7.10. После прохождения импульса быстро восстанавливается прежнее спокойное состояние. Таким образом, по нервному волокну распространяется не электрический ток, а некоторая электрохимическая реакция, которая и порождает бегущий импульс напряжения.
Импульс может образоваться и распространяться только потому, что в этом устройстве существует нелинейный элемент, который подавляет малые отклонения от нормального состояния и усиливает большие. Если бы не было никаких нелинейных эффектов, то передний фронт импульса (АВ на рис. 7.11) начал бы расплываться, подобно тому как расползается чернильная капля в воде.
Оба эти процесса имеют аналогичную природу и описываются одним и тем же уравнением диффузии (от лат. diffundo — рассеивать). В случае нервного импульса основной процесс — это диффузия ионов через мембрану. Если равновесие нарушено, диффузия быстро выравнивает концентрации. При этом фронт импульса становится все более пологим, высота его уменьшается, и он в конце концов исчезает. Нелинейная зависимость проницаемости мембраны от величины импульса приводит к тому, что более высокая часть импульса поднимается, а более низкая опускается (стрелки на рис. 7.13). Если нелинейность полностью уравновешивает диффузию, фронт импульса может просто сдвинуться вперед, не изменяя формы (А'B'). Так образуется уединенная волна нервного импульса.
В реальном нерве для поддержания движения импульса необходимо все время добавлять немного энергии, но эта энергия очень мала, «утомить» нерв довольно трудно. Важно, что из-за «самоорганизованности» импульса эти добавки не искажают форму и не изменяют скорость импульса (в точности как в часах, где передача энергии маятнику от пружины не изменяет период колебаний).
У нелинейной диффузии тоже есть своя интересная история. В 19З7 г. А. Н. Колмогоров, И. Г. Петровский и Н. С. Пискунов опубликовали замечательную математическую работу (между прочим, также связанную с биологической проблемой). Они показали, что нелинейность может уравновесить диффузию и что в результате может появиться бегущая уединенная волна с постоянной скоростью и формой. По сути дела, была открыта и изучена простейшая математическая модель нервного импульса, но, к сожалению, никто этого не понял. Нельзя сказать, что эта работа вообще не была замечена. Год спустя Я. Б. Зельдович и Д. А. Франк-Каменецкий применили ее результаты к теории горения (вспомните свечу и бикфордов шнур!), но настоящее понимание уединенной волны нелинейной диффузии пришло лишь двадцать-тридцать лет спустя.
Уединенная волна горения движется довольно медленно. Например, если поджечь с одного конца горючий газ в длинной трубке, то по ней побежит волна горения. Обычно скорость ее довольно мала, раз в десять меньше скорости звука в газе. Однако если поджечь газ мощной искрой (ни в коем случае не пытайтесь делать такие эксперименты, это очень опасно!), то может произойти взрыв (детонация). На самом деле этот взрыв представляет собой ударную волну горения, и скорость ее очень велика, в несколько раз больше скорости звука. Основы теории ударных волн горения (их еще называют взрывными или детонационными волнами) заложил в 1939 г. Я. Б. Зельдович. Он показал, что скорость фронта взрывной волны относительно продуктов горения в точности равна скорости звука. Полная скорость взрывной волны поэтому превышает скорость звука и определяется в конечном счете количеством тепла, выделяемым при химической реакции горения. Таким образом, взрывная волна, как и уединенная волна горения, имеет вполне определенную скорость. Этим она существенно отличается от обычных ударных волн, которые могут распространяться с различными скоростями и постепенно затухают.
Ч и т а т е л ь: Интересно, а бывают ли ударные нервные импульсы?
А в т о р: Я не слышал ни о чем таком и, не будучи специалистом в этой области, не могу дать более определенный ответ. Могу только сослаться на мои собственные наблюдения, подтверждаемые и другими людьми. В минуту смертельной опасности, возможно, включается какой-то более быстрый механизм передачи информации. Возникает ощущение, что время «растягивается», и успеваешь сделать, казалось бы, невозможное. Это довольно необычное и сильное переживание: «есть упоение в бою и бездны мрачной на краю». Каков механизм этого «ускорения» реакций, я не знаю. Может быть, что-то подобное происходит в момент перехода в иной, лучший мир (то, что врачи буднично называют «терминальным состоянием»). Об этом можно было бы много по рассуждать, но честнее последовать совету Талмуда: «Приучай уста твои говорить как можно чаще: я не знаю».
Как ни жаль, но придется на этом остановиться. Изучением элементарной «частицы мысли» сегодня занимаются биологи, физики, математики, химики, инженеры... Инженеры? Да, не удивляйтесь, инженерам-электрикам, о которых говорил Ходжкин, это тоже интересно! Были придуманы разные электрические модели нервного волокна, и они, вероятно, пригодятся если не для установления связи в Солнечной системе, так для чего-нибудь еще, скажем, для ЭВМ... В общем, работа идет большая, и конца ей пока не видно. Выяснение природы импульса — это, разумеется, только начало, да и здесь далеко не все понятно. А дальше надо разбираться, как он принимается, как преобразуется в действия мышц *) или в другие импульсы, как, в конце концов, эти «частицы мысли» связаны с нашими действительными чувствами и мыслями... Современная наука уже начинает подбирать ключи к ответам на эти вопросы. А началось все с уединенной волны!
*) Возможно, что в механизме сокращения мышц солитоны также играют важную роль. Солитоновая модель этого механизма предложена А. С. Давыдовым с сотрудниками.
Вездесущие вихри
Но живут, живут в N измерениях
Вихри воль, циклоны мыслей,
Те, кем смешны мы с нашим детским зреньем
С нашим шагом по одной черте.
В. БрюсовДо сих пор мы действительно шагали по одной черте. Все солитоны и уединенные волны, с которыми мы познакомились, по сути дела, одномерны (т. е. N = 1!). Это, как вы помните, означает, что существенна зависимость лишь от одной координаты. Так, волну, набегающую на морской берег, можно приближенно считать одномерной. Волны, расходящиеся от брошенного в воду камня, двумерны, а свет электрической лампочки распространяется трехмерными электромагнитными волнами. В современной физике элементарных частиц изучают и волны в пространствах большего числа измерений. Не удивительно, что физики и математики прилагают большие усилия для обнаружения и изучения солитонов и солитоноподобных объектов в «N измереньях». Точно вычисляемых настоящих многомерных солитонов пока немного. Наиболее подробно изучены солитоны, порожденные двумерными волнами, подобными волнам КдФ. Такие волны были впервые изучены в 1970 г. Б. Б. Кадомцевым и В. И. Петвиашвили, а через насколько лет удалось найти два типа двумерных солитонных решений полученного ими уравнения. Одно описывает столкновение обычных «одномерных» солитонов, налетающих друг на друга под углом (более простая задача — отражение солитона на поверхности воды, набегающего под углом на стенку набережной) *). Второе соответствует действительно двумерным солитонам, которые убывают по всем направлениям от вершины (если одномерный солитон подобен горному хребту, то двумерный — это просто одинокий холмик).