1. Современная наука о природе, законы механики - Ричард Фейнман
Шрифт:
Интервал:
Закладка:
Потенциальная энергия тяготения точечных масс Mи m на расстоянии rдруг от друга равна
U(r)=-GMm/r. (14.5)
Константа здесь выбрана так, чтобы потенциал исчезал на бесконечности. Конечно, эту же формулу можно применить и к электрическим зарядам, поскольку закон один и тот же:
U(r)=q1q2/4pe0r. (14.6)
Давайте теперь поработаем с одной из этих формул, посмотрим, поняли ли мы их смысл.
Вопрос: С какой скоростью должна отправиться ракета с Земли, чтобы покинуть ее?
Ответ: Сумма кинетической и потенциальной энергий должна быть постоянной; покинуть Землю — значит удалиться от нее на миллионы километров; если у ракеты только-только хватает сил, чтобы покинуть Землю, то надо предположить, что там, вдалеке, ее скорость будет равна нулю и что на бесконечности она будет едва-едва двигаться. Пусть а — радиус Земли, а M— ее масса. Кинетическая плюс потенциальная энергии первоначально были равны l/2 mv2 -GmM/a. В конце движения эти обе энергии должны сравняться. Кинетическую энергию в конце движения мы считаем нулевой, потому что тело еле движется (почти с нулевой скоростью), а потенциальная энергия равна величине GmM, деленной на бесконечность, т. е. опять нулевая. Значит, с одной стороны стоит разность двух нулей; поэтому квадрат скорости должен быть равен 2GM/a. Но GM/a2 это как раз то, что называют ускорением силы тяжести g. Итак,
v2=2ga.
С какой скоростью должен двигаться искусственный спутник, чтобы не падать на Землю? Мы когда-то решали эту задачу и получили v2=GM/a. Значит, чтобы покинуть Землю, нужна скорость, в Ц2 большая, чем скорость вращения спутника вокруг Земли. Иными словами, чтобы улететь с Земли, нужно вдвое больше энергии (энергия пропорциональна квадрату скорости), чем чтобы облететь вокруг нее. Поэтому исторически сначала были совершены облеты искусственных спутников вокруг Земли, для чего понадобились скорости около 7,8 км/сек. И только потом космические корабли были заброшены в мировое пространство; для этого потребовалось уже вдвое больше энергии, т. е. скорости около 11,2 км/сек.
Продолжим теперь наш обзор характеристик потенциальной энергии. Давайте рассмотрим взаимодействие двух молекул или двух атомов, например двух атомов кислорода. Когда они находятся далеко друг от друга, они притягиваются с силой, обратно пропорциональной седьмой степени расстояния, а при тесном сближении они сильно отталкиваются. Проинтегрировав минус седьмую степень расстояния, чтобы получить работу, мы увидим, что потенциальная энергия U (функция расстояния между атомами кислорода) изменяется как минус шестая степень расстояния (на больших расстояниях).
Если мы чертим некую кривую потенциальной энергии U(r) (фиг. 14.3), то при больших r она выглядит как r-6, а при достаточно малых r достигает минимума.
Фиг. 14.3. Потенциальная энергия взаимодействия двух атомов как функция расстояния между ними.
Минимум потенциальной энергии в точке r=d означает, что если мы сдвинемся от нее на малое расстояние, на очень малое расстояние, то произведенная работа, равная изменению потенциальной энергии на этом промежутке, почти равна нулю, потому что на донышке кривой энергия почти не меняется. Значит, в этой точке сила равна нулю, и это есть точка равновесия. Условие равновесия можно высказать и иначе: для удаления из точки равновесия в любую сторону нужно затратить работу. Когда два атома кислорода расположены так, что никакой энергии из их силы взаимодействия больше выжать нельзя, то они находятся в наинизшем энергетическом состоянии и промежуток между ними равен d. Так выглядит молекула кислорода, когда она не нагрета. При нагревании атомы колеблются и расходятся; их можно и совсем развести, но для этого нужно определенное количество работы или энергии, равное разности потенциальных энергий в точках r=d и r=Ґ. При попытке сблизить атомы энергия быстро возрастает вследствие их взаимного отталкивания.
Почему мы говорим о потенциальной энергии? Потому что идея силы не очень пригодна для квантовой механики, там более естественна идея энергии. Когда мы рассматриваем более сложные взаимодействия: ядерного вещества, молекул и т. д., то, хотя понятия силы и скорости «рассасываются» и исчезают, оказывается, что понятие энергии все же остается. Поэтому в книгах по квантовой механике мы находим кривые потенциальной энергии, но очень редко увидим график силы взаимодействия двух молекул, потому что те, кто изучает эти явления, больше уже привыкли думать об энергии, чем о силе.
Заметим еще, что, когда на тело одновременно действуют несколько консервативных сил, потенциальная энергия тела есть сумма потенциальных энергий от каждой силы. Это то, что мы утверждали и раньше, потому что, когда сила представляется векторной суммой сил, работа, производимая ею, равна сумме работ, производимых отдельными силами; поэтому ее можно представить как изменения потенциальных энергий от каждой силы по отдельности. Значит, общая потенциальная энергия равна сумме всех частей.
Мы можем обобщить это на случай системы многих тел, как, например, Юпитера, Сатурна, Урана и т. д. или атомов кислорода, азота, углерода и т. д., взаимодействующих друг с другом попарно, причем силы взаимодействия каждой пары консервативны. В таких условиях кинетическая энергия всей системы есть просто сумма кинетических энергий всех отдельных атомов, или планет, или частиц, а потенциальная энергия системы есть сумма потенциальных энергий взаимодействия отдельных пар, рассчитанных в предположении, что других частиц нет. (На самом деле для молекулярных сил это неверно, и формула получается несколько сложнее; для ньютонова тяготения это определенно справедливо, а для молекулярных сил годится лишь как приближение. Можно, конечно, говорить о потенциальной энергии молекулярных сил, но она иногда оказывается более сложной функцией положений атомов, чем простая сумма попарных взаимодействий.) Поэтому потенциальная энергия в частном случае тяготения представляется суммой по всем парам i и j членов — Gmimj/rij [как было показано в уравнении (13.14)]. Уравнение (13.14) выражает математически следующее предложение: общая потенциальная плюс общая кинетическая энергии не меняются со временем. Пусть себе различные планеты вращаются, обращаются и покачиваются, все равно если подсчитать общую потенциальную и общую кинетическую энергии, то окажется, что их сумма всегда остается постоянной.
§ 4. Неконсервативные силы
Мы потратили немало времени, обсуждая свойства консервативных сил. Что же мы теперь скажем о неконсервативных силах? Мы хотим разобраться в этом вопросе более подробно, чем это обыкновенно делают, и показать, что неконсервативных сил не бывает! Оказывается, все основные силы природы, по-видимому, консервативны. Не подумайте, что это следствие из законов Ньютона. На самом деле, насколько представлял себе это сам Ньютон, силы могут быть неконсервативными, как, например, трение, которое кажется неконсервативным. Употребляя слово «кажется», мы проводим современную точку зрения, которая доказывает, что все глубинные силы, все силы взаимодействия между частицами на самом фундаментальном уровне суть силы консервативные.
Когда мы, например, анализируем систему наподобие большого шарового звездного скопления (фотографию такого скопления мы показывали) с тысячами взаимодействующих звезд, то формула для общей потенциальной энергии состоит просто из суммы слагаемых, каждое из которых выражает взаимодействие какой-то пары звезд; точно так же и кинетическая энергия есть сумма кинетических энергий всех отдельных звезд. Но шаровое скопление как целое движется и в пространстве, и окажись мы от него так далеко, что не смогли бы различать отдельных деталей, мы бы приняли его за единый предмет. Если бы при этом к нему были приложены какие-то силы, то часть из них могла бы двигать его как целое и мы бы увидели, как центр этого тела движется. С другой стороны, прочие силы могли бы, если так можно выразиться, «тратиться» на повышение потенциальной или кинетической энергии «частиц» внутри «тела». Положим, например, что действие этих сил привело бы к расширению всего скопления и увеличению скоростей «частиц». Общая энергия «тела» на самом деле сохранялась бы. Но, глядя издалека нашими слабыми глазами, не различающими беспорядочных внутренних движений, мы бы видели только кинетическую энергию всего тела и нам бы казалось, что энергия не сохраняется, хотя все дело было бы в том, что мы не различаем деталей. Оказывается, что это всегда так: общая энергия Вселенной, кинетическая плюс потенциальная, если как следует посмотреть, всегда постоянна.