История естествознания в эпоху эллинизма и Римской империи - Иван Рожанский
Шрифт:
Интервал:
Закладка:
От Гераклида до нас не дошло ни одной строчки, хотя, судя по косвенным сведениям, он был талантливым писателем. Некоторые его сочинения были написаны в форме диалогов и оказали впоследствии влияние на философскую прозу Цицерона. Приводимый Диогеном Лаэртием большой список трудов Гераклида содержит этические, физические, грамматические и эстетические сочинения, причем по одиним их заглавиям трудно установить, в каком именно Гераклид изложил свои астрономические теории.
В комментариях к аристотелевскому трактату «О небе» Симпликий неоднократно упоминает Гераклида как ученого. впервые объяснившего видимое суточное вращение небесного свода вращением Земли вокруг своей оси[216](сообщения о том, что еще раньше эта же идея выдвигалась пифагорейцами Гикетом и Экфантом, слишком неясны и потому сомнительны). Некоторые исследователи полагают, что теория Гераклида была развитием намека на вращение Земли, содержавшегося в «Тимее» Платона. Возможно, что это в какой-то степени соответствовало истине, однако у Платона это был всего лишь намек, у Гераклида же — отчетливо сформулированная концепция. Во всяком случае, нет никаких указаний на то, что доктрина о вращении Земли вокруг своей оси подвергалась когда-либо серезьному обсуждению в Академии или Ликее.
О другой важной идее Гераклида сообщает Халкидий в своих латинских комментариях к «Тимею» (TV в. н. э.?)[217]. А именно, Гераклид будто бы предположил, что Венера движется не вокруг Земли, а вокруг Солнца и потому оказывается то ближе к нам, чем Солнце, то дальше. Хотя Меркурий и не упоминается Халкидием в данном контексте, однако разумно предположить, что гипотеза Гераклида относилась в равной степени к обеим этим планетам. То, что Меркурий и Венера не удаляются далеко от Солнца, было уже давно известно греческим астрономам; разногласия существовали лишь по поводу того, находятся ли они между Луной и Солнцем, или же Солнце следует считать вторым небесным телом по степени удаленности от Земли, за которым уже следует Меркурий[218]. Гипотеза Гераклида разрешала этот спор и давала естественное объяснение особенностям движения этих двух планет.
Любопытно, что эта гипотеза находила сторонников и в позднейшие времена; так, ее обсуждает известный математик IV в. Теон в своей «Астрономии», где она, правда, связывается с теорией эпициклов, о которой Гераклид, конечно, еще не имел представления[219]. Упоминается она также в книгах таких далеких от подлинной науки авторов V в., как Марциан Капелла[220] и Макробий[221], причем последний приписывает эту гипотезу египтянам. Имя Гераклида никто из этих авторов не называет, и, вообще говоря, не исключено, что гипотеза о вращении Меркурия и Венеры вокруг Солнца могла в дальнейшем выдвигаться независимо от него. Но приоритет в этом вопросе должен быть приписан, бесспорно, Гераклиду.
Существует еще одно любопытное свидетельство, относящееся к Гераклиду и приводимое Симпликием со ссылкой на комментарии Гемина к «Метеорологии» Посидония. Обсуждая вопрос о соотношении между физикой и астрономией, Гемин указывает, что астроном имеет право выдвинуть гипотезу, объясняющую те или иные явления, не заботясь о том, верна ли эта гипотеза с точки зрения физики или пет. При этом в качестве примера приводится заявление Гераклида, что аномалии в движении Солнца могут быть объяснены при предположении, что Земля каким-то образом движется, а Солнце каким-то покоится (ότι κινούμενη πως της γης, τοϋ δε ήλιου μένοντος πως)[222]. Вряд ли и этом заявлении Гераклида (скорее всего, устном) можно видеть указание на гелиоцентрическую гипотезу. Судя по всему, Гераклид всегда оставался убежденным геоцентристом. Скорее всего, речь шла здесь о неравномерности движения Солнца по орбите, следствием которой был уже упоминавшийся выше факт неравенства четырех времен года, причем Гераклид предложил объяснить эту кажущуюся неравномерность тем, что Земля не покоится неподвижно, а совершает вокруг центра мира какие-то колебания. Судя по характеру приведенной фразы, Гераклид никак не развивал своей идеи, а только выдвинул ее в качестве возможной гипотезы.
Оценивая образ Гераклида-ученого в целом, следует признать, что он был, действительно, скорее генератором идей, чем специалистом, доводившим эти идеи до математически оформленной теории. В этом отношении он, конечно, отличался и от Эвдокса, и от Аристарха (о котором речь пойдет ниже). Его идеи, однако, были настолько смелы и плодотворны, что он бесспорно заслуживает занять почетное место в истории античной науки.
В заключение заметим, что Аристотель ни разу не упоминает имени Гераклида Понтийского. Это можно объяснить только тем обстоятельством, что научные труды Гераклида были по тем или иным причинам неизвестны Стагириту. Возможно, что в основной своей части они были написаны уже после смерти великого основателя перипатетической школы.
Создателем первой в истории человечества гелиоцентрической системы мира был, как известно, Аристарх Самосский, деятельность которого падает на первую половину III в. до н. э. и потому уже прямо относится к эпохе эллинизма. Как сообщают позднейшие источники, он был учеником Стратона, преемника Феофраста по руководству Ликеем[223]. О его жизни нет никаких сведений — за исключением того, что примерно в 288–277 гг. до н. э. он занимался астрономическими наблюдениями в Александрии (как указывает Птолемей в «Альмагесте», в 280 г. до н. э. Аристарх наблюдал летнее солнцестояние, находясь в этом городе[224]). Основное сочинение Аристарха, в котором была изложена его система мира, до нас не дошло; о его содержании коротко сообщает Архимед в «Псаммите»[225]. Сохранился текст лишь очень небольшого, но крайне интересного трактата Аристарха «О размерах и расстояниях Солнца и Луны»[226]. Трактат Аристарха написан по образцу математических сочинений того времени: он состоит из ряда выводимых друг из друга теорем, которым предшествуют шесть фундаментальных положений, или «гипотез», взятых в основном из данных наблюдений, полученных при прохождении Луны через тень Земли во время лунных затмений. Из этих данных Аристарх заключает: 1) что расстояние от Земли до Солнца составляет приблизительно 18–20 расстояний от Земли до Луны; 2) что диаметры Солнца и Луны находятся в том же отношении друг к другу, как и их расстояния до Земли; 3) что отношение диаметра Солнца к диаметру Земли должно лежать в пределах между 19/3 и 43/6. Отсюда Аристарх вывел, что объем Солнца должен быть: 19/33, или приблизительно в 250 раз больше объема Земли.
Рис. 2. Метод определения отношения расстояний Земля — Луна и Земля — Солнце по Аристарху
Каким образом получил Аристарх эти значения, вообще говоря очень сильно отличающиеся от действительных? В качестве примера рассмотрим первое из приведенных соотношений — соотношение между расстояниями от Земли до Солнца и от Земли до Луны. Аристарх фиксирует тот момент времени, когда Луна находится строго в первой (или последней) четверти, т. е. когда мы видим освещенной половину лунного диска. Очевидно, что прямые, соединяющие Луну с Землей и Луну с Солнцем, образуют при этом прямой угол. Затем Аристарх определяет угол а, образованный в этот же момент прямыми, соединяющими
Луну с Землей и Землю с Солнцем (рис. 2). Этот угол, согласно его наблюдениям, оказывается равным двадцати девяти тридцатым прямого угла, т. е. в наших обозначениях α=87°. Задача состоит в том, чтобы определить, во сколько раз расстояние от Земли до Солнца (З.—С.) превосходит расстояние от Земли до Луны (З.—Л.), или, если пользоваться тригонометрическими терминами, в определении sin α. С помощью соответствующих геометрических построений Аристарх находит неравенства, заключающие отношение З.—С./З.—Л. в достаточно узкие границы. А именно, он получает:
18<(З.—С.)/(З.—Л.)<20
Математические рассуждения Аристарха безупречны. Почему же найденное им приближенное значение отношения З.—С./З.—Л. оказалось очень далеким от истинного? Потому, что принятое им значение угла α было получено путем очень неточных измерений (на самом деле α = =89°50′). С помощью тех измерительных средств, которые имелись в распоряжении Аристарха, точно определить тот момент, когда освещена ровно половина лунного диска, было практически невозможно. Дефектными были не математические приемы Аристарха, а его наблюдательная техника.
Зная отношение 3.—С./3.—Л. и учитывая тот факт, что видимые поперечники Солнца и Луны примерно равны, мы сразу же находим, что диаметр Солнца должен быть в 19 раз больше диаметра Луны.