Категории
Самые читаемые
onlinekniga.com » Научные и научно-популярные книги » Прочая научная литература » Магия математики: Как найти x и зачем это нужно - Артур Бенджамин

Магия математики: Как найти x и зачем это нужно - Артур Бенджамин

Читать онлайн Магия математики: Как найти x и зачем это нужно - Артур Бенджамин

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 53 54 55 56 57 58 59 60 61 62
Перейти на страницу:

Сдвигаем, записываем ответ дважды:

Складываем:

2T = 1 – 1 + 1 – 1 + 1 – 1 + 1 – 1 +…

Следовательно, 2T = S = 1/2, то есть T = 1/4, как и было сказано.

Ну и, наконец, посмотрим, что произойдет, если представить сумму всех положительных целых как U и сравнить ее с уже известной нам суммой T (точнее, с ее рядом без сдвига):

U = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 +…T = 1 – 2 + 3 – 4 + 5 – 6 + 7 – 8 +…

Вычтем второе из первого:

U – T = 4 + 8 + 12 + 16 +… = 4(1 + 2 + 3 + 4 +…)

Другими словами,

U – T = 4U

Решая это уравнение для U, получаем 3U = –T = –1/4, следовательно,

U = –1/12

как и предполагалось.

Для протокола отметим, что при сложении бесконечного количества положительных целых сумма расходится до бесконечности. Но не торопитесь списывать все наши конечные результаты на обычные чудеса математики – с подобными странностями можно и нужно разобраться. Достаточно просто посмотреть на числа под другим углом, и сумма 1 + 2 + 4 + 8 + 16 +… = –1 покажется не такой уж и невероятной.

В привязке к оси, как вы наверняка помните, казалось невозможным найти корень числа –1, но у нас получилось сделать это, когда мы трактовали комплексные величины как точки на комплексной же плоскости – точки, подчиняющиеся своим собственным арифметическим законам. Любой физик, занимающийся теорией струн[37], подтвердит, что 1 + 2 + 3 + 4 +… = –1/12, ведь именно на этой сумме основано множество его вычислений. Видите: даже самый абсурдный результат нельзя просто взять и отмести только на основании его абсурдности – всему есть свое объяснение, достаточно лишь напрячь воображение.

Давайте закончим эту книжку еще одним парадоксальным результатом. В начале раздела мы взяли знакочередующийся ряд

сходящийся к ln 2 = 0,693147…. От перемены мест слагаемых сумма, по идее, меняться не должна – этот принцип называется коммутативным законом сложения и выглядит как

A + B = B + A

для любых значений A и B. И тем не менее

Это именно перемена мест слагаемых: мы по-прежнему складываем дроби с нечетными значениями знаменателя и вычитаем дроби с четными значениями знаменателя. И хотя четные числа используются в ряду в 2 раза чаще, чем нечетные, тех и других у нас бесконечный запас. К тому же каждая из дробей встречается лишь единожды, как и в оригинальном уравнении. Правда? Правда. Но взгляните-ка:

Это значит, что у нас получается лишь половина изначальной суммы! Как такое возможно? И как возможно то, что перемена мест слагаемых приводит нас к другому результату? Ответ прост: коммутативный закон сложения вполне может «буксовать», когда дело доходит до бесконечного количества чисел, и это хорошо известно.

«Пробуксовка» возникает при схождении всякий раз, когда положительные величины вместе с отрицательными формируют расходящийся ряд. Другими словами, когда положительные величины дают в сумме ∞, а отрицательные –∞, как в нашем последнем примере. Подобные ряды называются условно сходящимися. Их магия заключается в том, что члены в них можно перемешивать как угодно – и получать тем самым нужный нам результат. Попробуем, например, прийти к 42. Сначала добавляем необходимое количество положительных величин, чтобы сумма чуть-чуть превышала 42, потом вычитаем первый из отрицательных членов. Снова поднимаемся выше 42 и снова вычитаем отрицательный член – на этот раз второй. Повторяем алгоритм и смотрим, как сумма будет все ближе и ближе подходить к 42 (например, вычтя пятый отрицательный член –1/10, мы получим значение, отличающееся от желаемого результата в пределах 0,1, пятидесятый же отрицательный член –1/100 уменьшит этот предел до 0,01 и т. д.).

Конечно, обычно бесконечные ряды, с которыми мы сталкиваемся в повседневной жизни, так странно себя не ведут. Если заменить каждый член ряда его абсолютным значением (что превратит отрицательные величины в положительные), то при сходящейся новой сумме мы получим абсолютно сходящийся ряд. Покажем это на примере уже известного нам знакочередующегося ряда:

Так вот, он будет именно абсолютно сходящимся, ведь при сложении абсолютных величин мы придем к другому, ничуть не менее знакомому нам сходящемуся ряду

Здесь коммутативный закон сложения «буксовать» не будет даже при бесконечном количестве членов. Следовательно, в изначальном знакочередующемся ряду числа 1, –1/2, 1/4, –1/8… можно «тасовать» как угодно – их сумма всегда будет равна 2/3.

К сожалению, в отличие от бесконечных рядов, любая книга, в том числе и эта, должна когда-то заканчиваться. Лезть дальше бесконечности мы, пожалуй, не осмелимся, а остановимся прямо здесь. Впрочем, у меня для вас припасено еще одно матемагическое блюдо.

На бис: магические квадраты

Уверен, этот десерт вам понравится. С бесконечностью он никак не связан, зато магия здесь содержится прямо в официальном названии – разве можно просто взять и пройти мимо? Магическим называется такой квадрат, в котором все значения по горизонтали, вертикали и диагонали дают в сумме одно и то же число. Самый известный такой квадрат – размером 3 на 3 – изображен чуть ниже. Все содержащиеся в нем числа суммируются до 15.

Мало кто знает, но этот квадрат обладает одним уникальным свойством, которое я бы назвал «квадратно-палиндромическим». Если представить каждую горизонталь или вертикаль как трехзначное число, а потом сложить их квадраты, получим

492² + 357² + 816² = 294² + 753² + 618²438² + 951² + 276² = 834² + 159² + 672²

То же происходит и с большими диагоналями:

456² + 312² + 897² = 654² + 213² + 798²

Магические квадраты магического квадрата!

Самый простой квадрат размером 4 на 4 включает в себя числа от 1 до 16, которые суммируются до 34 (см. ниже). Математики и фокусники очень любят квадраты 4 на 4: они дают нам десятки способов прийти к волшебному результату. Например, в нашем квадрате итоговое число 34 дают не только горизонтали, вертикали и диагонали, но и каждый внутренний сектор размером 2 на 2 (например, левый верхний (8, 11, 13, 2), центральный (2, 7, 16, 9) или «разнесенный» по углам (8, 1, 10, 15)) и большие диагонали.

У вас есть любимое двузначное число больше 20? Можно создать для него (обозначим его буквой T) свой магический квадрат из чисел от 1 до 12 и чисел T – 18, T – 19, T – 20 и T – 21.

Следующий наш пример основан на T = 55. Каждая четверка величин, ранее суммировавшихся до 34, дает нам 55, если в нее входит ровно одно (и ни в коем случае не два и не ноль) значение с переменной T – именно поэтому правый верхний сектор нам подходит (35 + 1 + 7 + 12 = 55), а средний левый – нет (34 + 2 + 3 + 37 ≠ 55).

Впрочем, даже если у вас нет любимого двузначного числа, то уж день рождения есть наверняка – а значит, теперь вы сможете создать свой личный магический квадрат! Воспользуемся моим методом «двойного дня рождения» – дорогая вам дата здесь появляется дважды: в верхней горизонтали и в четырех углах. Я обозначу взятые вами числа буквами A, B, C и D, чтобы наглядно показать, что именно у вас должно получиться. Как и в любом магическом квадрате, и горизонтали, и вертикали, и диагонали, и большинство симметрически расположенных внутренних секторов будут иметь сумму A + B + C + D.

Моя мать, например, родилась 18 ноября 1936 года, значит, ее личный магический квадрат выглядит вот так:

А теперь ваш день рождения. Следуя закономерности, указанной выше, вы получите свою личную сумму больше 30 раз – попробуйте посчитать сами.

Если же вам и этого мало, вот вам способы создать более крупные магические квадраты – например, квадрат размером 10 на 10, в который входят все числа от 1 до 100:

Сможете прикинуть, чему равна сумма чисел в каждой горизонтали, вертикали или диагонали, при этом их не складывая? Конечно же, сможете: много-много страниц назад мы доказали, что сумма всех чисел от 1 до 100 равна 5050, каждый же ряд составляет одну десятую от этого количества, то есть 5050/10 = 505.

1 ... 53 54 55 56 57 58 59 60 61 62
Перейти на страницу:
На этой странице вы можете бесплатно читать книгу Магия математики: Как найти x и зачем это нужно - Артур Бенджамин.
Комментарии