Категории
Самые читаемые
onlinekniga.com » Научные и научно-популярные книги » История » Чернобыль. Как это было - Анатолий Дятлов

Чернобыль. Как это было - Анатолий Дятлов

Читать онлайн Чернобыль. Как это было - Анатолий Дятлов

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 2 3 4 5 6 7 8 9 10 ... 69
Перейти на страницу:

Реактор РБМК-1000 – это реактор канального типа, замедлитель нейтронов – графит, теплоноситель – обычная вода. Топливная кассета набирается из 36 твэлов по три с половиной метра длиной. Твэлы с помощью дистанционирующих решёток, закреплённых на центральном несущем стержне, размещаются на двух окружностях: на внутренней 6 штук и на внешней 12 штук.

Каждая кассета состоит из двух ярусов по высоте. Таким образом, активная зона имеет высоту семь метров. Каждый твэл набирается из таблеток UO2 размещённых в герметичной трубе из сплава циркония с ниобием. В отличие от корпусных реакторов, где все топливные кассеты располагаются в общем корпусе, рассчитанном на полное рабочее давление, в реакторе РБМК каждая кассета размещена в отдельном технологическом канале, представляющем собой трубу диаметром 80 мм.

Активная зона реактора РБМК высотой 7 и диаметром 11,8 м набрана из 1 888 графитовых колонн с центральными отверстиями каждая, куда установлены каналы. Из этого числа 1 661 – технологические каналы с топливными кассетами, остальные – каналы СУЗ, где размещены 211 поглощающих нейтроны стержней и 16 датчиков контроля. Каналы СУЗ равномерно распределены по активной зоне в радиальном и азимутальном направлениях.

Снизу к технологическим каналам подводится теплоноситель – обычная вода под высоким давлением, охлаждающая твэлы. Вода частично испаряется и в виде пароводяной смеси сверху отводится в барабан-сепараторы, где пар отделяется и поступает на турбины. Вода из барабан-сепараторов при помощи ГЦН вновь подаётся на вход в технологические каналы. Пар после отработки в турбинах конденсируется и возвращается в контур теплоносителя. Таким образом, замыкается контур циркуляции воды.

Если принять конструкцию активной зоны заданной, посмотрим куда деваются нейтроны деления. Часть нейтронов уходит за пределы активной зоны и теряется безвозвратно. Часть нейтронов поглощается замедлителем, теплоносителем, конструкционными материалами и продуктами деления топливных ядер. Это бесполезная утрата нейтронов. Остальные поглощаются топливом. Для поддержания постоянной мощности количество поглощаемых топливом нейтронов также должно быть неизменным. Следовательно, из испускаемых при каждом делении топливного ядра двух с половиной (в среднем) нейтронов на утечку и захват неделящимися материалами мы можем терять полтора нейтрона. Это будет критичный реактор.

Такой реактор работать не может, хотя бы по следующей причине: при делении урана образуются ядра различных химических элементов и среди них в значительном количестве ксенон с атомным весом 135, обладающий очень большим сечением поглощения нейтронов. При подъёме мощности начинает образовываться ксенон, и реактор заглохнет. Так и было с первым американским реактором. Э. Ферми посчитал сечение захвата нейтронов ядром ксенона и в шутку сказал, что ядро получается величиной с апельсин.

Для компенсации этого и других эффектов топливо в реактор загружают с избытком, что при постоянной утечке нейтронов и поглощении их неделящимися материалами увеличивает долю поглощения топливом. Чтобы не происходило постоянного наращивания мощности такого реактора, в активную зону вводят так называемые органы воздействия на реактивность, содержащие материалы, интенсивно поглощающие нейтроны. Методы компенсации могут быть различные, мы рассмотрим их только на примере РБМК.

В каналах СУЗ размещаются стержни, содержащие сильный поглотитель нейтронов – бор, с помощью которого и поддерживается нужный баланс нейтронов и, следовательно, мощность реактора. При необходимости увеличения мощности часть стержней выводится полностью или частично из активной зоны, в результате чего увеличивается доля нейтронов, поглощаемых топливом, мощность возрастает и стержни по достижении нужного уровня мощности вновь вводятся в активную зону. Как правило, новое положение стержней управления не идентично исходному – это зависит от изменения реактивности активной зоны при изменении мощности – от мощностного коэффициента реактивности. При необходимости уменьшения мощности в активную зону вводят стержни, т.е. вводят отрицательную реактивность, реактор становится подкритичным и мощность начинает уменьшаться. На новом уровне мощность стабилизируется изменением положения стержней. Всё это осуществляется АР. Оператор нажатием кнопки изменяет уровень заданной мощности, а остальное – дело регулятора. Правда, в случае с реактором РБМК это не совсем так, а иногда и совсем не так, – оператор вынужден своим вмешательством корректировать работу регулятора в основном по установлению энерговыделения в той или иной части зоны.

Во вновь построенном реакторе технологические каналы загружаются свежими невыгоревшими топливными кассетами. Если все 1 661 канал загрузить кассетами, то коэффициент размножения будет столь велик, что погасить его имеющимися стержнями управления будет невозможно. Поэтому около 240 технологических каналов вместо топливных кассет загружаются специальными стержнями-поглотителями нейтронов. И ещё несколько сотен поглотителей размещаются в отверстиях центральных несущих стержней топливных кассет. По мере выгорания топлива эти поглотители постепенно извлекаются и заменяются топливными кассетами. При извлечении всех поглотителей поддержание нужной реактивности активной зоны осуществляется заменой наиболее выгоревших кассет свежими. Наступает режим стационарных перегрузок.

В реакторе РБМК топливные кассеты заменяются при работе реактора на мощности специальной разгрузочно-загрузочной машиной. В это время активная зона содержит полностью выгоревшие кассеты, свежие и с промежуточным выгоранием. Вот на этот режим и рассчитано количество стержней управления и защиты.

Каждый стержень СУЗ вносит какую-то реактивность, что зависит от его местоположения в зоне и формы нейтронного поля. В реакторе РБМК реактивность принято измерять в стержнях, эффективность одного стержня условно принята 0,05 %. Как уже пояснялось, скорость увеличения мощности реактора тем больше, чем больше его положительная реактивность. Скорость уменьшения мощности также больше при большей внесённой отрицательной реактивности.

В результате нарушений режима и неисправностей в системах возникает необходимость во избежание повреждений быстро заглушить реактор. Поэтому количество стержней СУЗ всегда должно быть с избытком для приведения реактора в состояние с нужной подкритичностью. Когда реактор находится в критическом состоянии (критическое значит не катастрофическое, а что его коэффициент размножения равен единице и, соответственно, реактивность равна нулю), обязательно должно быть не менее какого-то количества стержней выведено из активной зоны и готово к немедленному вводу в зону для прекращения цепной реакции деления. И чем больше стержней выведено из активной зоны, тем больше уверенности, что реактор при необходимости будет заглушён быстро, с большой подкритичностью. Это верно для всех реакторов, спроектированных согласно требованиям норм и правил безопасности.

Во всех реакторах тем или иным путём часть органов воздействия на реактивность введена в реактор – это необходимо для маневрирования мощностью. К примеру, при вынужденном частичном снижении мощности временно увеличивается количество ксенона (говорят, что реактор отравлен ксеноном), увеличение количества поглотителя нейтронов нужно скомпенсировать выводом из зоны части оперативно извлекаемого поглотителя. Иначе реактор придётся заглушить и ждать распада ксенона.

В реакторе РБМК при работе часть стержней СУЗ находится частично или полностью в активной зоне и подавляет (компенсирует) какую-то избыточную реактивность. Теперь определимся с понятием ОЗР.

Оперативный запас реактивности – это положительная реактивность, которую реактор имел бы при всех извлечённых стержнях СУЗ.

Как и нормальным реакторам, реактору РБМК запас реактивности также необходим для манёвра мощностью. Ещё после аварии в 1975 г. на первом блоке Ленинградской АЭС для РБМК был определён минимальный запас реактивности в 15 стержней исходя из необходимости регулирования энерговыделения в активной зоне. А после чернобыльской аварии была найдена совершённая дикость, абсурд – при малом запасе АЗ не глушит, а разгоняет реактор. Чем меньше запас реактивности, тем более ядерноопасен РБМК?! Знай наших!.. Мы не как другие прочие.

Ещё реакторов с такими свойствами нет. Можно понять, что АЗ не справилась с глушением реактора, но чтобы сама разгоняла реактор – такого и в кошмарном сне не привидится.

Как и ОЗР, в тексте часто будут упоминаться паровой эффект реактивности и мощностной коэффициент реактивности. Уясним понятия.

Пусть реактор работает на какой-то мощности при неизменном расходе теплоносителя. В технологическом канале вода нагревается до кипения и появляется пар. По мере продвижения в канале всё больше воды, отбирающей тепло у твэлов, превращается в пар. Таким образом, в стационарном режиме имеем в пределах активной зоны какое-то количество пара. Теперь увеличим мощность реактора. Количество тепла возрастает и, следовательно, будет в активной зоне больше водяного пара. Каким образом это повлияет на реактивность активной зоны – в сторону уменьшения или увеличения – зависит от соотношения в зоне ядер замедлителя и топлива. Вода также является замедлителем нейтронов, как и графит, и с увеличением количества пара в активной зоне становится меньше воды. Проектанты, видимо, исходя из экономических соображений, выбрали соотношение ядер замедлителя и топлива в РБМК таким, чтобы полная замена воды паром вела к увеличению реактивности на пять-шесть р.

1 2 3 4 5 6 7 8 9 10 ... 69
Перейти на страницу:
На этой странице вы можете бесплатно читать книгу Чернобыль. Как это было - Анатолий Дятлов.
Комментарии