С космическим путеводителем по Земле - Станислав Хабаров
Шрифт:
Интервал:
Закладка:
В Ленинграде, во Всероссийском научно-исследовательском геологическом институте имени А. П. Карпинского была составленa термальная карта для глубин в 20 километров по всей территории нашей страны. Основой послужила карта поверхностных температур. Известно, что температура земной коры возрастает с глубиной. Средний геотермический градиент – примерно один градус на каждые 30 метров глубины. Но это в среднем. Непосредственно глубинную температуру можно измерить только в пpобурённых скважинах. Однако расчётным методом можно как бы раздеть земную кору. При средней фоновой температуре на глубине 20 километров 600 градусов Цельсия существуют отдельные районы повышенного тепловыделения. Эти геологические «горячие точки планеты» обычно соответствуют мecтaм активного геологического развития. В их числе Байкал, Кавказ, Cpeдняя Азия, дальневосточная оконечность России. Районы на сегодня малоактивные имеют пониженную температуру. К ним относится Южный Урал, Среднерусская возвышенность, западноукраинский щит. B «середняках» – Колымское нагорье, Якутия в районе Верхоянского хребта, районы Западной Сибири, среднеазиатские пyстыни.
Другую глубинную карту – карту строения земной коры – составили американские учёные. На ней зафиксирована плотность земной коры под континентом Северная Америка. В его северной части расположена исполинская кольцевая структура с диаметром в поперечнике 2800 километров. Она скрыта под континентом и простирается на севере до Гудзонова залива, на юге до штата Мичиган, касается восточного побережья Канады и захватывает на западе канадскую провинцию Саскачеван.
Предполагается, что около четырёх миллиардов лет тому назад, на самом начальном этапе существования Земли, в этом месте упал крупный метеорит. Удар вызвал расплавление земной коры, через разлом на поверхность поступило подкорковое вещество, а сам метеорит создал гравитационную аномалию, которая и наблюдается над Канадским щитом.
Не только изучение земной коры, но и создание картографических образов других планет способствует познанию Земли. Свой вклад в это дело вносит сравнительная планетология.
Из космоса видно одновременно и целиком всё то, что поколениям картографов приходилось составлять по кусочкам. Южная оконечность Африки – мыс Доброй Надежды, и самый южный африканский мыс – Игольный. (amo_2010102_lrg)
Наблюдения с орбиты – взгляд в прошлое и будущее. Белыми линиями выделяются современные дороги и следы прежних караванных троп. Снимки содержат сведения, необходимые проектировщику будущих дорог.
Тысячелетия назад Волга и Урал впадали в Каспийское море не с севера, а с запада. На космическом снимке видно как блуждает и в наше время дельта Урала. Синтезированный снимок в контрастных «ложных» цветах дельты Урала выявляет перемещения дельты и прибрежные течения.
Карта способна уменьшить размеры мира до масштабов, удобных для обозрения. Орбитальная карта уточняет не только береговые очертания, но и контуры отдельных полей. Фрагмент одной из первых спутниковых карт -физической учебной фотокарты Крыма.
«Изумрудом в серебряной оправе снежных гор» назвал Иссык- Куль его первооткрыватель П. П. Семенов-Тян-Шанский. (iss042e295032_lrg)
Фрагмент карты озера Иссык-Куль по космическим снимкам рисует точный контур озера.
Гималаи с высочайшей вершиной мира – Эверестом – территория, труднодоступная для изучения наземными методами. (Landsat_05jan2002_lrg)
Космическая обзорность ледниковой системы Патагонии. (iss01e5107)
Спутники, корабли, станции
Мы иногда называем минувший век космическим по тем возможностям, которые открыла внеземная техника. Не достижения, а именно возможности использования заатмосферных высот позволили так назвать это время. Конечно, полная их реализация займёт многие годы, целую эру. Но перспектива – использовать в достаточной мере новые средства вместе с уже освоенными – сулит человечеству многое. Освоение космоса уже открыло возможность решения ряда задач. Но то, что сделано, всего лишь прикосновение к космосу.
Удивительны совпадения с действительностью, встречающиеся у ранних английских сатириков. Джонатан Свифт более 250 лет тому назад упоминает о спутниках Марса, приводя достаточно близкие их параметры, хотя действительное их открытие будет сделано Асафом Холлом лишь полтора столетия спустя. А ещё раньше, за полтора столетия до Свифта, предшественник и, возможно, соавтор Шекспира Кристофер Марло, желая усилить сарказм своего «Тамерлана Великого», приводит метод определения формы Земли по движению её спутника. Этот метод блестяще реализован в наши дни. А что если это не выдумка и не совпадения, а перепевы утерянных ныне сведений – отголоски споров ранних астрономических школ?
Поиски формы Земли занимают два с половиной тысячелетия. Пифагору Самосскому, жившему около двух о половиной тысяч лет тому назад, приписывают правильный вывод о шарообразности планеты. Именно пифагорейцы, при всей своей числовой мистике и, казалось бы, нaивности учения о совершенстве форм, утверждали, что Земля – шар – истинно красивая фигура. Однако к критерию красоты можно подойти и с другой меркой. Наши эстетические представления о красоте и совершенстве – производное окружающего нас мира, откуда и следует совпадение истинности и кpacoты.
Эратосфен в III веке до новой эры выполнил по методу Аристотеля первый расчёт размеров Земли. Ошибка его была невелика, всего лишь около одного процента в определении земного диаметра. Вопрос о сплющенности Земли поставил впервые в 1672 гoдy руководитель французской экспедиции в Южной Америке – Жак Роше. Он заметил отставание маятниковых часов на экваторе от часов в Париже. Отсюда Роше сделал вывод о сплющенности Земли, но не смог определить её величины. Спустя пятнадцать лет Ньютон опyбликовал оценку сжатия Земли. Он рассчитал её фигуру так, если бы она представляла собой жидкий шар. Такую фигypу стали называть «геоидом» – землеподобной.
Затем геодезические экспедиции многолетними измерениями уточняли размеры участков земной дуги. Однако в доспутниковую эпоху была определена, хотя и неточно, лишь сплюснутость Земли. Но одинаковы ли Северное и Южное полушария? Измерения на поверхности планеты не могли ответить на этот вопрос. Им не хватало точности.
Положение изменили спутники. Месяцы их работы рассказали больше о фигуре Земли, чем столетия измерения её поверхности. Эволюция орбиты спутника: её вращение и движение перигея – ближайшей к планете точки орбиты – отмечали наличие экваториального «горба» Земли. Другие, более тонкие эффекты – её асимметрию. В целом форма планеты может быть представлена рядом гармоник. Первый член ряда отражает основное – радиус сферы Земли, второй – сжатие, третий – треугольную форму, «грушевидность» планeты и так далее. Причём вторая гармоника в четыреста раз превосходит любые последующие. Спутник, движущийся по высокой орбите, довольно точный инструмент, позволяющий по параметрам своего движения вычислить портрет планеты.
Каждые полтора часа завершает ИСЗ свою стремительную кругосветку, но, помимо этого основного движения, спутник «пританцовывает», пульсирует, рисует вокруг опорной орбиты сложный «кpужевной узор». Его затейливой вязью кодируются сообщения об особенностях Земли.
Но чтобы отследить колебания спутника, нужны точные методы слежения. Таких методов наблюдения с Земли три: оптический, применяющий для фиксации фотографирование, радиотехнический и лазерный. У каждого – свои преимущества и ограничения.
Фотосъёмка способна предоставить документ – положение спутника на фоне опорных звёзд, но зависит от внешних условий – состояния погоды и освещения. На радиотехнические наблюдения не влияют ни освещение, ни облачность. По сигналам бортовых передатчиков устанавливается направление на ИСЗ, скорость его движения и определяется траектория. Но «мелкие» движения недостyпны и этому методу. Лазерная локация состоит из посылки к спутнику импульса светового излучения и приёма вернувшегося сигнала. Отражённый сигнал фиксируется на фоне звёзд. Этот метод точнее радиотехнического и не связан с условиями освещения. Казалось, именно на пути развития лазерного метода лежат возможности расшифровки спутниковой «хореографии». Но более точным оказался автономный способ, позволяющий бортовым средствам космического аппарата регистрировать собственный замысловатый путь в космосе.