Импульсные блоки питания для IBM PC - Александр Куличков
Шрифт:
Интервал:
Закладка:
• невозможность удовлетворительной регулировки уровня напряжения вторичной цепи прямым воздействием на автогенераторный каскад. Необходимость установки стабилизаторов во вторичной цепи и в этом случае существенное снижение КПД;
• трудность тестирования силового каскада преобразователя при проведении ремонтных работ.
Последний фактор имеет немаловажное значение. Режимы автогенератора рассчитываются с учетом реальных условий его функционирования и жестко от них зависят. Оценка и анализ отказа, особенно связанного с силовым каскадом, может проводиться только при отключенном напряжении питания. Безопасное включение сетевого преобразователя (с первичным питанием от 220 В) на пониженное напряжение в «щадящем» режиме для тестирования может оказаться бессмысленным, так как условия самовозбуждения не будут выполнены и преобразователь не запустится. Если произведенная замена неисправных элементов окажется неправильной или неполной, может произойти повторный отказ, и в результате выйдут из строя новые элементы. Ремонт таких источников требует особого внимания, предварительной подготовки и тщательного всестороннего анализа возникшей проблемы.
Перечисленные недостатки описанных выше преобразователей накладывают серьезные ограничения на их применение. В настоящее время более широко используются источники питания, структурная схема которых соответствует приведенной на рис. 1.2. Такие источники питания частично лишены недостатков, свойственных автогенераторным преобразователям. Они выгодно отличаются существенно большей экономичностью, предсказуемостью параметров, удобнее при проведении ремонтных и диагностических работ (эти вопросы будут подробно рассмотрены при описании методов поиска неисправностей в реальных схемах).
В значительной степени сложность и экономичность схемы источника питания зависит от выбранного способа управления силовым каскадом и методов стабилизации вторичных напряжений. Рассмотрим несколько возможных вариантов решения этих проблем.
1.2.2. Методы стабилизации напряжения в импульсных преобразователях напряжения
Как отмечалось выше, одним из основных преимуществ ИБП является возможность преобразования первичной электрической энергии с более высоким КПД по сравнению с обычными трансформаторными источниками питания. Чаще всего это достигается за счет стабилизации выходного напряжения воздействием на процесс функционирования силового усилительного каскада преобразователя напряжения. Только в многоканальных ИБП с различными нагрузочными возможностями каналов при необходимости применяются дополнительные линейные или импульсные стабилизаторы вторичного напряжения.
Для стабилизации величины выходного напряжения используются методы регулирования количества энергии, поступающей во вторичную цепь. Основными среди них являются: ШИМ, ЧИМ и релейная стабилизация напряжения. Эти методы отличаются способами воздействия на силовой (усилительный) каскад высокочастотного преобразователя, активные элементы которого работают в ключевом режиме. Как правило, система управления выполняется на маломощных компонентах, представляющих собой комбинацию аналоговых и цифровых элементов. Согласно рис. 1.2 узел регулирования состоит из:
• измерительной цепи, определяющей отклонение реальной величины напряжения нагрузки от номинального значения;
• схемы управления – формирователя конечной формы ВЧ сигнала, непосредственно воздействующего на силовые элементы преобразователя. В состав этого узла включены элементы, которые согласуют уровни сигналов и нагрузочную способность каскадов;
• задающего генератора – маломощная схема формирования колебаний с базовыми характеристиками, которые подвергаются изменениям в схеме управления.
Принцип действия ШИМ стабилизации заключается в изменении длительности импульсов, усиливаемых силовым каскадом, без коррекции собственно частоты колебаний и их амплитуды. Длительность импульсов, формируемых схемой управления, должна быть обратно пропорциональна величине напряжения на нагрузке. Процесс стабилизации вторичного напряжения с помощью ШИМ представлен на рис. 1.11а. Кривая Uн отражает изменение напряжения на нагрузке при отсутствии стабилизации. Характер изменения длительности импульсов в зависимости от Uн показан на графике Um(t), временная шкала содержит отметки кратные Т – условному периоду следования импульсов.
В отличие от предыдущего способа, ЧИМ стабилизация характеризуется модификацией частоты управляющего сигнала при постоянной длительности импульсов. На качественной диаграмме отработки частотным модулятором изменения напряжения Uн, приведенной на рис. 1.11 б, показано изменение частоты импульсов, обратно пропорциональное значению Uн.
Рис. 1.11. Графическая иллюстрация работы стабилизаторов вторичного напряжения: а – с ШИМ, б – с ЧИМ, в – релейная стабилизацияВ релейной системе стабилизации цепи управления отслеживают изменения напряжения на нагрузке и, когда его значение выходит за пределы допустимой зоны стабилизации, производится формирование импульсов, при воздействии которых и происходит «подкачка» энергии в цепь нагрузки. На рис. 1.11в изменением управляющего импульсного сигнала Um(t) изображено регулирование уровня напряжения на нагрузке Uн. Уровнями Uпор.1 и Uпор.2 задан диапазон, в рамках которого должно находиться Uн. Генерация импульса начинается в момент понижения Uн ниже уровня Uпор.2, а прекращается при его возрастании более установленного Uпор.1. Как видно из рисунка, частота следования импульсов и их длительность варьируется в широких пределах и определяется свойствами нагрузки.
Диаграммы показывают качественную сторону регулирования и не отражают реальную картину процессов с учетом задержек срабатывания схем и погрешностей измерений.
Способ ШИМ стабилизации, несмотря на некоторое схемотехническое усложнения узла по сравнению с двумя другими методами, нашел наиболее широкое применение на практике. Поэтому этот метод стабилизации вторичного напряжения будет рассмотрен наиболее подробно. ШИМ регуляторы имеют следующие преимущества:
• обеспечение высокого КПД и поддержание основной частоты преобразования независимо от изменения напряжения первичного питания и величины нагрузки. При этом частота пульсаций на нагрузке имеет постоянное значение, что важно при проектировании и использовании фильтров с расчетными характеристиками и может быть критичным для нагрузок с различным характером входного сопротивления;
• возможность применения цепей синхронизации частоты с внешним задающим генератором, обладающим заданными параметрами.
Все магнитопроводы имеют определенные ограничения по частотным характеристикам, поэтому стабильность частоты ШИМ преобразователя позволяет наиболее правильно выбирать материал сердечника для них и эффективно использовать их возможности.
Структурная схема ШИМ регулятора и его подключение к каскадам ПН представлена на рис. 1.12.
Рис. 1.12. Структурная схема ШИМ регулятораНапряжение на нагрузке в общем случае может быть произвольным, и поэтому устройство сравнения подключается к ней через делитель напряжения. Кроме того, предполагается, что напряжение на нагрузке находится в пределах, определяемых диапазоном регулировки, и во время работы в ней не возникает нештатной ситуации (короткое замыкание и т. п.). Устройство сравнения вырабатывает сигнал рассогласования, знак которого определяется соотношением сравниваемых входных сигналов – опорного напряжения и напряжения с выхода делителя напряжения. После необходимого усиления сигнал рассогласования Uр и сигнал специальной формы Uф, выдаваемый формирователем опорного сигнала, подаются на второе устройство сравнения и компаратор напряжения. Компаратор выполняет квантование входного сигнала рассогласования. После компаратора сигнал управления Uи приобретает форму импульсов с заданными частотой и длительностью. Устройство согласования выполняет усиление импульсного сигнала управления до уровня и мощности, необходимой для возбуждения усилителя мощности. Временное положение выходных импульсов компаратора относительно сигнала специальной формы зависит от выбранного метода формирования последнего.
Формирователь сигналов специальной формы может генерировать три вида сигналов заданной частоты: треугольной формы (рис. 1.13а), прямой пилы (положительное нарастание напряжения) (рис. 1.13б) и обратной пилы (рис. 1.13в).
Рис. 1.13. Формирование импульсов ШИМ регулятором при различных видах сигналов специальной формы: а – треугольный сигнал; б – прямой пилы; в – обратной пилыНа устройстве сравнения 2 проводится сопоставление текущих значений усиленного сигнала рассогласования Uр и сигнала специальной формы Uф. Из рис. 1.13а видно, что при совпадении величин этих сигналов происходит срабатывание компаратора. Импульс положительного напряжения на его выходе появляется в момент превышения напряжением Uф текущего значения Uр. На диаграмме для напряжения управления Uи видно, что формирование импульсного напряжения на выходе компаратора происходит с некоторым запаздываем по времени и уровню, что отражает реальную картину процессов в ШИМ регуляторе. Фронт (начало) импульса появляется, когда результирующее напряжение сравнения Uср совпадает с некоторым значением напряжения Δ. Спад (окончание) импульса формируется при значении Uср, равном – Δ. Этот эффект называют гистерезисом. Параметры гистерезиса зависят от скорости изменения напряжения Uср, а инерционность срабатывания элементов определяется временем рассасывания неосновных носителей в полупроводниковых приборах. В случае генерации сигнала треугольной формы сформированная импульсная последовательность имеет некоторое отклонение от частоты исходного сигнала специальной формы. В данном случае происходит модуляция импульсной последовательности как по длительности импульса, так и по частоте его следования.
На рис. 1.13б представлены временные диаграммы работы ШИМ регулятора, формирующего управляющую последовательность с модуляцией положения фронта импульса. В данном случае производится генерация пилообразного сигнала с положительным нарастанием напряжения. Фронт импульса (с учетом гистерезиса) начинает формироваться при совпадении напряжений Up и Uф на участке линейного нарастания последнего. Спад импульса жестко синхронизирован со спадом пилообразного напряжения. На нижней диаграмме рисунка показано, что спады импульсов следуют через одинаковые промежутки времени, равные периоду T пилообразного сигнала.