Вселенная, жизнь, разум - Иосиф Шкловский
Шрифт:
Интервал:
Закладка:
Одним из важнейших результатов полета «Пионера-10» было преодоление разного рода опасностей, связанных с некоторыми неприятными областями околосолнечного космоса. Прежде всего определенное беспокойство вызывало прохождение этого аппарата через пояс астероидов, где частота метеорных ударов могла быть угрожающе высока. Но все обошлось благополучно, и космонавты будущего это, конечно, учтут. Ученые также выражали сомнения, смогут ли приборы «Пионера-10» выдержать ожидаемую огромную интенсивность радиационных поясов гигантской планеты. Эти опасения были не напрасны. Уже на расстоянии 700 000 км от планеты установленные на борту «Пионера-10» приборы стали указывать на весьма быстрый рост уровня радиации, который удваивался через каждые десять часов. Уровень жесткой радиации почти достиг предельно допустимого значения, но все же приборы не вышли из строя.
Существование мощных радиационных поясов Юпитера установлено было свыше 15 лет назад из анализа радиоастрономических наблюдений этой гигантской планеты. Полет «Пионера-10» позволил существенно уточнить характеристики этих поясов, несравненно более мощных, чем околоземные. Приборы, установленные на этом аппарате, позволили измерить магнитное поле Юпитера, среднее значение которого 4 Э. Очень интересна структура этого поля. На самом деле там имеются два магнитных поля: одно типа земного («дипольное»), но только несимметричное по отношению к телу планеты, и второе, связанное с его мощными радиационными поясами. Взаимодействие быстро вращающейся магнитосферы Юпитера с солнечным ветром приводит к ускорению заряженных частиц до весьма высоких энергий. Эти частицы могут попадать даже во внутренние области Солнечной системы.
Хотя специальных телевизионных камер на борту «Пионера-10» не было, с помощью особого сканирующего радиолокационного устройства по телеметрическому каналу была передана информация, позволившая с исключительной четкостью получать цветные изображения облачного слоя, покрывающего Юпитер. Качество этих изображений несравненно лучше полученных на лучших земных телескопах. С большой детальностью было получено изображение знаменитого «красного пятна», было открыто несколько меньших «красных пятен», а также масса других деталей, которые весьма быстро меняются со временем. Вообще, весь облачный слой Юпитера охвачен бурными движениями, связанными с переносом большого количества энергии.
Установленный на «Пионере-10» ультрафиолетовый спектрометр позволил по измеренным спектральным линиям определить химический состав атмосферы гигантской планеты. Оказалось, что на 82 процента (по числу атомов) она состоит из водорода, на 17 процентов из гелия и только 1 % дают все остальные элементы вместе взятые, которые входят в состав разных химических соединений. Химический состав атмосферы Юпитера до удивления похож на солнечный и резко отличается от земного. Сходство со звездой — Солнцем — еще более усиливается по следующей причине. Несколько лет назад было установлено, что в далекой инфракрасной области спектра Юпитер излучает в 2,5 раза больше энергии, чем получает от Солнца во всем спектр е, в том числе и в видимой его части. Следовательно, в отличие от остальных планет, Юпитер есть «самосветящееся» космическое тело. Источником энергии излучения Юпитера скорее всего является его непрерывное сжатие. Подсчеты показывают, что для этого достаточно сжиматься на 1 миллиметр в год. Таким образом, строго говоря. Юпитер является не планетой, а маленькой протозвездой (см. гл. 4).
Подобно Земле, Марсу и Венере Юпитер окружен водородной «короной», простирающейся вплоть до орбиты его ближайшего большого («галилеевского») спутника Ио. Этот спутник, так же как и другой, называемый Ганимедом, имеет атмосферу, плотность которой в миллион раз меньше земной. Спутник Ио замечателен еще тем, что сильно влияет на мощность всплесков длинноволнового радиоизлучения Юпитера (см. выше). Он как бы выполняет функции «космического громоотвода». Наблюдения с борта «Пионера-10» позволили уточнить массу Ио, которая составляет 1,22 массы Луны.
Через год после «Пионера-10» был запущен «Пионер-11» с той же научной программой, которая была успешно выполнена после сближения его с Юпитером в декабре 1974 г. В отличие от «Пионера-10», который силой юпитерова притяжения будет выброшен за пределы Солнечной системы и в 1987 г. пересечет орбиту Плутона (см. гл. 19), «Пионер-11» осенью 1979 г. прошел через систему Сатурна, между поверхностью этой планеты и ее знаменитым кольцом. Об этом будет сказано немного дальше.
Выдающиеся результаты были получены в 1979 г. на двух межпланетных автоматических станциях «Вояджер». Поражают воображение великолепные фотографии Юпитера, в том числе его знаменитого Красного пятна (рис. 71, не сканировался). Сенсационным было открытие кольца вокруг Юпитера (рис. 72, не сканировался), состоящего, как и кольцо Сатурна, из огромного количества мелких твердых частиц. В этой связи заметим, что существование кольца вокруг Юпитера несколько лет назад было предсказано советским астрономом С. К. Всехсвятским. К этому выводу он пришел, анализируя старые фотографии Юпитера, на которых одна экваториальная полоса (меняющаяся со временем) была истолкована им как тень от кольца. Никто, однако, к этой работе серьезно не отнесся…
Но, пожалуй, самым выдающимся результатом, полученным на «Вояджерах», является обнаружение действующих вулканов на Ио — самом внутреннем из галактических спутников Юпитера (рис. 73 и 74, рис. 74 не сканировался). Этот спутник обращается вокруг гигантской планеты в ее мощной магнитосфере, что и определяет целый ряд его особенностей. На «Вояджере-2» были получены великолепные фотографии и другие галилеевых спутников (рис. 75, 76 и 77, не сканировались).
В начале сентября 1979 г. после 6 1/2 лет полета через систему Сатурна прошла знаменитая автоматическая межпланетная станция «Пионер-11», о которой речь шла выше. На этой станции были получены уникальные фотографии колец Сатурна, в частности, была открыта новая система колец. Выяснилось, наконец, что кольца Сатурна состоят из мелких кусочков льда размерами ~ 1 см. Еще был открыт новый маленький спутник. Особый интерес представляет проведенное на «Пионере-11» исследование атмосферы крупного спутника Сатурна — Титана. Наконец, было доказано, что Сатурн подобно Юпитеру излучает в инфракрасных лучах примерно в два раза больше энергии, чем получает от Солнца. Это означает, что Сатурн имеет свой внутренний источник энергии, который, несомненно, связан с непрерывным сжатием этой гигантской планеты. «Пионер-11», честно поработав для науки, уходит из нашей Солнечной системы в межзвездное пространство, неся на себе весточку о нашей цивилизации (см. гл. 19).
Не исключено, что образующиеся в атмосфере Юпитера (а также других больших планет) органические соединения должны растворяться в аммиачных или водяных капельках, из которых состоят нижние ярусы облаков.
Представляет определенный интерес обсуждение возможности жизни на аммиачной основе. Оказывается, что можно провести далеко идущую аналогию между процессами растворения в аммиаке и воде, а также между «аммиачными» органическими соединениями и «обычными», являющимися основой живого вещества на Земле, где «жизненной средой» была вода. Температура плавления аммиака достаточно высокая. То же следует сказать и о температуре кипения. У аммиака высокая удельная теплоемкость и достаточно большая (хотя и меньшая чем у воды) диэлектрическая постоянная. Он является очень хорошим растворителем. Все перечисленные свойства жидкого аммиака делают его потенциально способным при некоторых условиях сыграть роль «жизненной среды», подобно воде на заре возникновения жизни на нашей планете.
Можно установить полное соответствие между «обычными» солями и органическими соединениями, с одной стороны, а «аммиачными» — с другой. Оказывается, что для этого надо заменить ион O= на аминовую группу NH=, а ион гидроксила OH= на амин NH2=. При такой замене, например, муравьиной кислоте HCOOH будет соответствовать соединение HCNHNH2, а метиловому эфиру CH3OCH3 — соединение CH3NHCH3. На аммиачной основе таким способом можно построить аналоги «обычных» аминокислот, а затем сколь угодно сложные аналоги всевозможных белковых соединений. Вполне допустимы аммиачные аналоги нуклеиновых кислот, пуринов и пиридинов. Наконец, можно представить аналоги ДНК и РНК с их кодом наследственности.
Аналогом окисления при такой «аммиачной» жизни является присоединение ионов NH= или N=, в то время как конечным продуктом жизнедеятельности вместо воды и углекислого газа будет аммиак и циан. Таким образом, можно сказать, что гипотетические аммиачные организмы «пьют» аммиак и «дышат» азотом, в то время как земные «водные» организмы пьют воду и дышат кислородом…