Категории
Самые читаемые
onlinekniga.com » Научные и научно-популярные книги » Физика » 1. Современная наука о природе, законы механики - Ричард Фейнман

1. Современная наука о природе, законы механики - Ричард Фейнман

Читать онлайн 1. Современная наука о природе, законы механики - Ричард Фейнман

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 51 52 53 54 55 56 57 58 59 60
Перейти на страницу:

Итак, мы обнаруживаем, что сила в направлении х равна минус частной производной U по х:

Fx=-дU/дx (14.11)

Точно так же и сила в направлении у получается дифференци­рованием U по у при постоянных х и z, а третья составляющая силы опять-таки есть производная по z при х и у постоянных:

В этом и состоит способ получать силу из потенциальной энер­гии. Поле получается из потенциала в точности так же:

Заметим, кстати, что существует и другое обозначение (впро­чем, пока оно нам не понадобится). Так как С есть вектор с компонентами х, у, z, то символы д/дх, д/ду, d/dz, дающие х-, у-, z-компоненты поля, чем-то напоминают векторы. Матема­тики изобрели знаменитый символ С, или grad, называемый «градиентом»; это не величина, а оператор, он делает из скаляра вектор. У него есть три составляющие: x-компонента этого grad есть д/дх, y-компонента — д/ду, а z-компонента— d/dz, и мы можем позабавиться, переписав наши формулы в виде

Глядя на С; мы мгновенно узнаем, что наши уравнения вектор­ные; но на самом деле уравнение (14.14) означает в точности то же, что и (14.11) и (14.12); просто это другой способ записи. Не желая писать каждый раз три уравнения, мы пишем одно лишь СU.

Еще один пример полей и потенциалов связан с электри­чеством. В этом случае сила, действующая на неподвижное тело, равна заряду, умноженному на поле: F = qЕ. (В x-составляющую силы входят, вообще говоря, и члены, которые зависят от маг­нитного поля. Но из уравнения (12.10) легко увидеть, что сила, действующая на частицу со стороны магнитных полей, всегда направлена поперек поля и поперек ее скорости. Благодаря этому свойству магнетизм не производит никакой работы над движущимся зарядом, потому что сила перпендикулярна пере­мещению. Значит, вычисляя кинетическую энергию в электри­ческом и магнитном полях, можно пренебречь вкладом магнит­ного поля, так как оно не изменяет кинетической энергии.) По­ложим, что имеется только электрическое поле. Тогда мы можем рассчитать энергию или произведенную работу точно таким же способом, как и для тяготения: вычислить величину j, равную минус интегралу от Е·ds от произвольной фиксированной точки Р до точки, в которой вычисляется потенциал; тогда потенци­альная энергия в электрическом поле равна просто произведе­нию заряда на эту величину j:

j(r) = -E·ds,

U=qj.

В качестве примера рассмотрим две параллельные метал­лические пластины с поверхностным зарядом ±s (на единицу площади) каждая. Такая штука называется плоским конден­сатором. Мы уж убедились раньше, что снаружи пластин сила равна нулю, а между ними существует постоянное электрическое поле. Оно направлено от плюса к минусу и равно s/e0 (фиг. 14.5).

Фиг. 14.5. Поле между параллель­ными пластинами.

Мы хотим знать, какую работу надо совершить, чтобы перенести заряд от одной пластины к другой. Работа равна интегралу от (Сила.)·(ds). Его можно записать как произведение заряда на значение потенциала на пластине 1 минус та же величина на пластине 2:

W=∫F·ds= q(j1-j2).

Интеграл здесь легко вычислить, так как сила постоянна, и если обозначить толщину конденсатора d, то интеграл равен

Разница в потенциалах Dj= sd/e0называется напряжением и j измеряют в вольтах. Когда мы говорим, что пара пластин заряжена до определенного напряжения, мы хотим этим сказать, что разность электрических потенциалов двух пластин равна стольким-то вольтам. У конденсатора, сделанного из двух параллельных пластин с поверхностным зарядом ±s, напряжение (или разность потенциалов этой пары пластин) равно sd/e0.

1 ... 51 52 53 54 55 56 57 58 59 60
Перейти на страницу:
На этой странице вы можете бесплатно читать книгу 1. Современная наука о природе, законы механики - Ричард Фейнман.
Комментарии