Интернет-журнал 'Домашняя лаборатория', 2007 №11 - Журнал «Домашняя лаборатория»
Шрифт:
Интервал:
Закладка:
Отдельные группы ученых, входящие в состав международного консорциума «Международный проект по дешифровке генома риса» (IRGSP), взялись за изучение риса. Рис содержит 430 млн пар нуклеотидных оснований, тогда как у кукурузы это число составляет 3 млрд., а у пшеницы — 16 млрд. И генов у всех них больше, чем у человека, и этим, возможно, объясняется наша зависть. Выяснение того, как различия в геноме ведут к различиям признаков организмов, и вызывает интерес ко второй половине этой гонки.
Нынешнее положение еще можно сравнить с видением сосуда, который мы рассчитываем заполнить, уяснив до конца, как взаимодействуют молекулы ДНК, РНК и белка. Он может представляться нам либо наполовину полным, либо наполовину пустым.
Последствия и бедствия
В отличие от других нерешенных проблем, протеом ближе к цели. Взять нас с вами. Человеческий геном поможет каждому из нас, ибо есть вещи, которые мы наверняка согласимся уяснить и поправить. Решение воспользоваться знанием выходит далеко за рамки чистой науки, которой движет любопытство. Однако человеку свойственно искать практические выгоды. Пришельцы, совершившие переворот в биологии, были движимы не одним только любопытством. Те, кто субсидировал частные лаборатории по дешифровке генома, сообразовывались не только с человеческим благом, но и с сулимой выгодой. Как только становится возможным влиять на условия человеческого существования, выступают иные соображения — нравственные.
Использование знаний о человеческом геноме несет и добро, и зло. Возможно, памятуя о Манхэттенском проекте, первый глава Национального центра по изучению генома человека Джеймс Уотсон 5 % средств центра направлял на изучение нравственных, правовых и социальных последствий проекта. Он писал: «Нам более не надо живых укоров, вопросов и ответов, как наука, оказавшись в нечистоплотных руках, способна принести неисчислимые бедствия».
Вопросы применения генетических знаний на практике выходят за рамки нашей книги, но все же вкратце обрисуем несколько таких приложений в надежде прояснить состояние соответствующей отрасли знания, чтобы в итоге принимались взвешенные с нравственной точки зрения решения о претворении их в жизнь.
Биочип. Посредством метода фотолитографии, сходного с тем, что используется при производстве кристаллов (чипов) для ЭВМ, сотни тысяч биологически активных молекул — ДНК, РНК, белков — укладываются столбиками и рядами на стеклянный или кремниевый кристалл. Для проверки биологические молекулы метят флуоресцентным красителем, затем намывают на кристалл. Нанесенные на кристалл молекулы ДНК или белка, по словам изобретателя Стива Фодора, действуют «подобно тонким полоскам молекулярной "липучки"». Проверяемые молекулы комплиментарны к молекулам на кристалле и прилепятся к ним, после чего при лазерном сканировании предстанут в виде светящейся точки. Выходные данные сканирования затем выводятся на экран, обрабатываются ЭВМ и, наконец, используются для выявления мутаций, получения сведений о ходе болезни или лечения, для определения, какие гены взаимодействуют друг с другом при росте клетки, и изучения многих иных сторон генетики.
Сельскохозяйственное применение. Посредством рестрикционных ферментов можно изменять ДНК растений для получения нужных признаков: высокой урожайности, более питательной пищи для людей и животных, повышенного содержания витаминов и минералов, большей устойчивости к заболеваниям, гербицидам для облегчения борьбы с сорняками, роста устойчивости к насекомым-вредителям, способности связывать азот для уменьшения количества вносимых удобрений и повышения удойности коров на молочных фермах.
Генетический контроль у человека. Поскольку наследственные признаки у человека целиком зависят от генов, мы можем отбирать их для потомства и предсказывать вероятность генетических заболеваний у людей. Такая возможность сопряжена с далеко идущими этическими последствиями.
Изучение стволовых клеток. После оплодотворения яйцеклетки зародыш содержит всю генетическую информацию о дальнейшем развитии организма. Клетки, способные развиться в любую клетку организма, именуются зародышевыми стволовыми клетками. По мере роста организма клетки специализируются, утрачивая гибкость стволовых клеток. Стволовые клетки с заложенным в них потенциалом можно выращивать и использовать для таких крайне важных целей, как восстановление поврежденных сердечных мышц или тканей позвоночника. Однако методы выращивания подобных клеток сопряжены с этическими вопросами, до конца еще не решенными. Иной подход — дождаться более зрелого возраста и выращивать специализированные клетки взрослых, которые столь же полезны.
Клонирование. Поначалу клонирование заключалось в замене ядра яйцеклетки ядром другой клетки с последующим внедрением новой яйцеклетки в матку суррогатной матери, которая в итоге даст потомство, чьи генетические свойства будут одинаковыми со свойствами пересаженного ядра. После овладения данным методом успешные опыты были проведены на мышах, свиньях, коровах, а наибольшую известность получила ныне погибшая овца Долли.
Итак, можно ли клонировать человека? Исходя из современной биологической практики это вполне возможно, и некоторые, правда неподтвержденные, заявления уже последовали со стороны секты раэлитов[13]. Нужно ли это делать — другой вопрос, относящийся к нравственной и правовой сферам. Не менее важна возможность использования рестрикционных ферментов для вырезания и вклеивания человеческой ДНК в ДНК животных с последующим клонированием животных, превращая их в фабрики по производству лекарственных белков, редких гормонов или даже целых органов для пересадки людям при повреждении или заболевании их собственных органов.
Небольшая подборка использования геномики (а значит, и протеомики) дает представление о нравственной стороне геномики и протеомики (более подробно см.: Список идей, 9. Генетические технологии).
Решение головоломки: почему, как, кто и где, когда?
Почему. Протеомика дает возможность создавать новые, более действенные лекарства и диагностические средства. Однако число пар азотистых оснований, генов и белков, с которыми приходится иметь дело, ставит трудную задачу перед теми, кто исследует, создает и испытывает подобные средства.
Вы только взгляните на эти числа: 3 млрд. пар нуклеотидных оснований, 30 тыс. генов, сотни тысяч белков присутствуют в человеческом организме. Они усложняют и без того трудную задачу, требуя методов по обработке огромных объемов данных. Новая отрасль — биоинформатика вызвала большой наплыв ученых — специалистов по составлению алгоритмов — в качестве равноправных биологов, давая возможность обеспечить их орудиями сбора, упорядочивания и толкования биологически значимых данных. Хотя биоинформатика и может оказаться ключевой в решении общей задачи, не исключено, что объем задачи указывает на ее неразрешимость. Сложность взаимодействий белков делает всю биологическую систему объектом, где крайне малые изменения на входе, легко вызываемые великим множеством обычных в таком деле возмущающих факторов, неизбежно приводят к совершенно неожиданным последствиям (подобный вопрос встает в гл. 5 о предсказании погоды).
Некоторым образом данная проблема перекликается с проблемой в физике, где отдельные частицы образуют совокупности, поведение которых предсказывается на основе вероятностных методов. Данный подход, именуемый