Категории
Самые читаемые
onlinekniga.com » Научные и научно-популярные книги » Физика » Астероидно-кометная опасность: вчера, сегодня, завтра - Борис Шустов

Астероидно-кометная опасность: вчера, сегодня, завтра - Борис Шустов

Читать онлайн Астероидно-кометная опасность: вчера, сегодня, завтра - Борис Шустов

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 57 58 59 60 61 62 63 64 65 ... 104
Перейти на страницу:

Рис. 7.7. Видимая звездная величина астероида Апофис

Рис. 7.8. Расстояние от астероида Апофис до Земли

Примерно такие же возможности имеются у радиолокатора в Евпатории и модернизируемого радиотелескопа в Уссурийске. Таким образом, «окна» для радиолокационных наблюдений будут открыты только в конце 2012 г. — первой половине 2013 г., в октябре 2020 г. и феврале — августе 2021 г.

В работе [Chesley, 2005] предпринята попытка оценить, насколько точно может быть определена орбита Апофиса из возможных оптических и радиолокационных наблюдений, при условии, что из них будет получена не только астрометрическая информация о положениях Апофиса, но и найдено положение оси и направление вращения астероида. Как отмечалось ранее, две последние величины важны для оценки влияния эффекта Ярковского на движение астероида. В работе предполагается, что в периоды, наиболее благоприятные для наблюдений, каждую вторую ночь будет получено одно астрометрическое наблюдение со средней ошибкой в 0,2″, а в периоды, когда наблюдения будут менее доступны, но все еще возможны для крупных телескопов, одно наблюдение с той же ошибкой будет получено в течение каждой лунации. Далее предполагается, что в периоды 14–20 февраля и 6–10 июля 2013 г., а затем в периоды 9–12 октября 2020 г. и 16–20 марта 2021 г. с помощью радиолокатора в Аресибо будет выполнено в сумме 23 измерения расстояния до астероида с различной точностью в зависимости от расстояния. С учетом уже имеющихся наблюдений и предположительно осуществленных к исходу того или иного интервала можно оценить, с какой точностью определяется большая полуось эллипса рассеяния на плоскости цели в 2029 г. по всем имеющимся на рассматриваемый момент наблюдениям. Из вычислений Чизли следует, что к началу 2014 г. большая полуось эллипса рассеяния сократится примерно до 30 км, а к началу 2022 г. — до величины, несколько превышающей 10 км, если радарные наблюдения осуществлены не будут, и до 1 км, если они будут выполнены. Кроме того, в работе Чизли моделируется уточнение эллипса рассеяния с учетом годичного приема радиосигналов с эквивалентной точностью ±2 м от передатчика, доставленного на Апофис в 2019 г. С учетом радионаблюдений точность определения большой полуоси эллипса рассеяния повысится до 100 м.

В работе [Giorgini et al., 2008] эта проблема также обсуждается, но с применением иных подходов. Впрочем, результаты в целом оказываются сопоставимыми.

Можно поставить вопрос: какова вероятность того, что с учетом всех факторов столкновение с Апофисом в 2036 г. произойдет, и как вероятность столкновения будет эволюционировать с течением времени? Можно попробовать найти ответ на этот вопрос, если еще раз обратиться к рис. 7.5. Мы уже видели, что «замочная скважина» для столкновения в 2036 г. располагается на расстоянии 1444,7 км = 4,11σζ от центра эллипса, что определяет малую вероятность столкновения. Но при этом не был принят во внимание эффект Ярковского. Он способен сдвинуть центр эллипса, а вместе с ним и весь эллипс рассеяния вдоль большой оси в ту или иную сторону. Направление смещения и его величина зависят от положения оси вращения астероида. Если наклон оси вращения к плоскости орбиты астероида меньше 90° (прямое вращение), то, как нетрудно видеть, реактивный эффект покидающих тело тепловых фотонов имеет составляющую, направленную по вектору орбитальной скорости тела (рис. 7.9).

Рис. 7.9. Эффект Ярковского в случае прямого вращения астероида; F — вектор реактивного ускорения, v — орбитальная скорость астероида

Это приводит к увеличению большой полуоси орбиты астероида и уменьшению его среднего движения. Астероид будет двигаться по орбите с некоторым отставанием во времени и догонит плоскость цели 13 апреля 2029 г., несколько позже по сравнению с невозмущенным случаем. Из этого следует, что координата ζ центра эллипса окажется больше и астероид пройдет мимо Земли на несколько большем расстоянии от ее центра и от «замочной скважины» (положение последней в возмущенном случае останется практически тем же). В случае обратного осевого вращения астероида все будет обстоять с точностью до наоборот. Астероид пересечет плоскость цели в более ранний момент времени по сравнению с невозмущенным случаем, и весь эллипс как целое сместится в сторону меньших геоцентрических расстояний. По расчету [Giorgini et al., 2008] эффект Ярковского может привести к смещению астероида вдоль орбиты на величину от 325 км до 740 км в зависимости от принятых значений радиуса, плотности вещества и коэффициента теплопроводности. Можно рассчитать, что значение координаты ζ при этих смещениях вдоль орбиты изменится на величины того же порядка. При прямом направлении вращения это означает, что расстояние от центра эллипса до «замочной скважины» возрастет на указанные величины и что столкновение практически невозможно (вероятность столкновения меньше 10-7). При обратном направлении вращения эффект Ярковского способен сдвинуть эллипс рассеяния так, что «замочная скважина» окажется в пределах 3aζ. Вероятность столкновения в этом случае остается малой, но заметно отличной от нуля.

7.8. Астероид 2008 ТС3

Данный объект называют астероидом, поскольку он был обнаружен по технологии наблюдения астероидов и получил первичное обозначение как астероид. На самом деле это тело оказалось малым по размеру и, строго говоря, должно называться не астероидом, а метеороидом (см. главу 5). Тем не менее, этот объект интересен тем, что его столкновение с Землей было заранее спрогнозировано и реально наблюдалось. Тем самым международная кооперация по обнаружению АСЗ прошла важное испытание в отношении оперативности и слаженности ее действий, а обсуждающиеся в этой главе методы прогноза столкновений прошли практическую проверку. Все события с момента открытия астероида и до момента его столкновения с Землей произошли очень быстро и заняли не более суток.

6 октября 2008 г. в 6 ч 39 мин Всемирного времени (UTC) Р. Ковальский на обсерватории Маунт Леммон (штат Аризона, США) обнаружил объект примерно 19m, предварительно обозначенный им как STA9D69. Наблюдения выполнялись в рамках финансируемого НАСА обзора объектов, сближающихся с Землей (Catalina Sky Survey). Наблюдения немедленно были переданы в Международный планетный центр, где была вычислена предварительная орбита, показавшая, что объект с вероятностью 98 % находится на орбите, приводящей к столкновению с Землей в ближайшее время. Объект получил предварительное обозначение 2008 ТС3. Планетный центр немедленно разместил информацию об объекте на своем сайте и передал ее в Лабораторию реактивного движения НАСА (США). В течение часа после получения первых данных в ЛРД было вычислено, что объект войдет в атмосферу Земли 7 октября над северо-восточной Африкой.

Исходя из оценок звездной величины и расстояния до астероида его размер был определен в 2–5 м. Обычно объекты такого размера полностью разрушаются в атмосфере Земли. Поверхности Земли достигают только небольшие осколки, потерявшие высокую скорость. Вхождение астероида в атмосферу могло наблюдаться в течение нескольких десятков секунд как яркий болид. По имеющимся данным, вторжения тел таких размеров в атмосферу Земли происходят несколько раз в год. Следовательно, он не представлял особой угрозы для Земли. Однако оповещенные наблюдатели поторопились к телескопам, чтобы наблюдать этот необычный астероид до того, как он войдет в тень Земли и станет невидимым. В этих наблюдениях приняли участие и российские наблюдатели: астроном-любитель Т. Крячко, наблюдавший астероид на Кавказской астрономической станции обсерватории им. В. П. Энгельгардта Казанского государственного университета. На автоматизированном телескопе ГАО РАН (Пулково) ЗА-320М в ночь с 6 на 7 октября 2008 г. были проведены астрометрические и фотометрические наблюдения астероида 2008 ТС3. За 4 часа получено 270 наблюдений в интегральной полосе телескопа. Оценена абсолютная звездная величина астероида, его размер (4,8 ± 0,8 м) и масса (131 ± 5 т).

Новые наблюдения позволили уточнить первоначальную орбиту астероида. В течение последующих 11 часов было выпущено 24 электронных циркуляра, содержащих уточняемые параметры орбиты и эфемериды астероида. Оказалось, что большая полуось орбиты составляет 1,27 а.е., эксцентриситет — 0,29, а период обращения — 1,43 года, q = 0,91 а.е., Q = 1,63 а.е. Стив Чизли (ЛРД) сообщил, что астероид войдет в земную атмосферу примерно в 2 ч 45 мин 28 с UTC и достигнет максимального торможения на высоте примерно в 14 км в 2 ч 45 мин 54 с UTC с неопределенностью в ±15 с. Всего на 27 обсерваториях было получено 589 позиционных наблюдений; блеск астероида, зафиксированный в последних наблюдениях, составил примерно 13–14m.

А. Харрис, М. Козубал, Р. Дантовиц и П. Правек из наблюдений и анализа кривой блеска определили, что астероид совершает сложное вращение вокруг двух осей с периодами 97 с и 49 с.

1 ... 57 58 59 60 61 62 63 64 65 ... 104
Перейти на страницу:
На этой странице вы можете бесплатно читать книгу Астероидно-кометная опасность: вчера, сегодня, завтра - Борис Шустов.
Комментарии