Невероятно – не факт - Александр Китайгородский
Шрифт:
Интервал:
Закладка:
Для подсчета вероятностей надо, как мы знаем, считать число комбинаций.
Пусть у меня – «играющего» – на руках туз, король, семерка и восьмерка козырей. У моих партнеров – Петра Ивановича (П. И.) и Николая Васильевича (Н. В.) – дама, валет, десятка, девятка. Как они разложились – неизвестно. Если мне очень не повезло, то есть все отсутствующие у меня четыре козыря оказались на одной руке, то они могут быть либо у П. И., либо у Н. В. Это два случая. Козыри могут разделиться и так: у П. И. один из четырех, у Н. В. три. Таких случаев, конечно, четыре. Еще четыре случая имеется, когда один из козырей находится у Н. В., а три у П. И. И шесть вариантов появляется, когда козыри распределяются пополам: дама и валет; дама и десятка; дама и девятка; валет и десятка; валет и девятка; наконец, десятка и девятка. (Множить на 2 не надо, так как, если дама и валет у П. И., то десятка и девятка у Н. В. и так далее.)
Всего случаев шестнадцать. Следовательно, вероятность наскочить на вариант, когда все козыри на одной руке – 2/16 (1/8). Только очень осторожные игроки и при очень крупной игре считаются с возможностью такой неприятности. А хорошие игроки в нормальной игре ею пренебрегают. Но и рассчитывать на то, что козыри разделились пополам, они тоже не станут, ибо вероятность этого события 6/16 (3/8) все же меньше половины.
Подавляющее большинство опытных игроков, назначая игру, предполагают, что наиболее вероятный расклад не хуже, чем «три – один». И они правы, так как в 14 случаях из 16 (6 случаев расклада пополам и 8 случаев расклада «три – один») недостающие козыри разложатся благоприятно. Вероятность такой ситуации – 14/16 (7/8). А это близко к единице.
Если у «играющего» на руках пять козырей, назначение игры в большой степени зависит от его темперамента, ибо вероятность наткнуться на три козыря на одной руке равна 1/4. Действительно, из всех 8 вариантов (2 – по три козыря, 3 – по одному козырю и 3 – по два козыря) вероятность такого события равна 2/8 (1/4).
И еще одна задача на подсчет комбинаций. Для преферансиста интересен расклад не только козырей, но и второй масти. Рассмотрим случай, когда у «играющего» на руках две масти по четыре карты. Одна масть козырная, другую, как говорят, надо разыграть, то есть постараться и на ней взять побольше взяток. И в этом случае решающим является расклад карт, но теперь обеих мастей по рукам «вистующих» партнеров. Как назначить игру? С какими раскладами следует считаться?
Комбинации карт (одна масть черная, вторая красная), которые могут очутиться на одних руках «вистующих», рассчитываются следующим образом. Четыре карты, как говорилось выше, распределяются 16 способами. А на каждую комбинацию черной масти приходится 16 вариантов распределения красных карт. Всего же вариантов будет (16)2, то есть 256.
Какие комбинации могут быть? Ну прежде всего поистине трагическая, когда четыре черные и четыре красные на одной руке. Таких будет две: все восемь карт или у П. И., или у Н. В. Их вероятность очень мала 2/256 (1/128), и заядлые преферансисты вспоминают такие проигрыши (а они бывают) как черный кошмар и на них не рассчитывают.
А какова вероятность самого желанного для «играющего» расклада, то есть по две черные и две красные карты на каждой руке «вистующих»? Так как для одной масти таких комбинаций шесть, то есть всего (6)2, то есть 36. Вероятность этого светлого исхода равна 36/256 (1/7). На такой вариант опытные игроки, разумеется, также не рассчитывают. Остается среднее.
Волнующий момент игры в преферанс – приобретение прикупа. Прикуп – это 2 закрытые карты из 32. «Свои» карты – их 10 – преферансисту известны, а 2 карты (прикуп) из 22 он должен «угадать».
В каждом отдельном случае игрок делает свой расчет. Все зависит от того, какие карты у него на руках и на что он рассчитывает, торгуясь за прикуп.
Положим, он надеется купить пятого козыря к своим четырем. Среди 22 не его карт 4 не его козыря. Значит, вероятность лежащей в прикупе карты быть козырем 4/22, а не быть им – 18/22.
Две карты лежат рядышком рубашкой кверху. Возможны четыре случая: та, что слева, – нужный ему козырь – раз, та, что справа, тоже козырь – два, обе карты козырные – три, нет в прикупе козырей – четыре. По теореме умножения вероятности этих событий равны: (4/22·18/22); (18/22·4/22); (4/22·4/22); (18/22·18/22), а это дает 0,148; 0,148; 0,034; 0,670 (в сумме, разумеется, единица).
Какая карта слева, какая справа, игроку все равно. Так что шанс у него на удачу равен 0,148 + 0,148 = 0,296, то есть почти 30 процентов. Как, стоит ему рисковать?
Есть такое выражение – «прикупная карта». Пусть у нашего «героя» на руках по три «сильные» карты трех мастей и одна карта из четвертой масти, скажем, из пик. Достаточно ему приобрести одну любую (кроме пики), чтобы получилась выигрышная игра. Среди 22 не его карт 7 пиковой масти (у него одна), следовательно, вероятность пики 7/22, вероятность любой из карт других мастей – 15/22. Его погубит лишь один вариант – в прикупе 2 пики: вероятность этого случая (7/22)2, то есть около 0,1.
Значит, 90 процентов шансов за то, что его покупка будет удачной и ему есть смысл рисковать.
Я знал одного человека, который не очень любил трудиться. Если ему удавалось наскрести денег на билет в сторону «туда», он садился в поезд и отбывал на юг, в края неги и загара, имея в кармане несколько рублей. Насколько мне помнится, все эти путешествия кончались одинаково: он возвращался довольный, загорелый и даже потолстевший. Как же он устраивался? Очень просто: он играл в преферанс (а играл он безупречно). Это не значит, что он выигрывал каждую игру. Но любое назначение, любой его ход был оправдан вероятностным подсчетом, который он производил подсознательно, на основе своего богатейшего опыта. Когда его спросили, не боится ли он нарваться на игроков, которые играют не хуже его, он ответил, что садится играть только после того, как понаблюдает за игрой своих будущих жертв.
Как видите, случайностей карточного расклада он не боялся.
Из всего сказанного можно сделать вывод, что в таких играх, как преферанс, много важнее правильно назначить игру (то есть в соответствии с теорией вероятностей); правильно выбрать тактику игры; играть столь совершенно, чтобы каждый ход был верным (то есть согласным с теорией вероятностей), нежели быть удачливым в прикупе или в раскладе карт у «вистующих» Значит, выигрыш в преферансе не зависит от случая? Нет, зачем такое крайнее суждение. Зависит. Но только тогда, когда партнеры одинаково хорошо или одинаково плохо играют. Поэтому, если Петр Иванович и Николай Васильевич встречаются с одними и теми же равными им по умению партнерами по субботам и проворачивают пару пулек, то результат такой игры за долгий срок обязательно будет нулевым. Случай вступит в свои права и уравняет выигрыши и проигрыши по той же причине, по которой Монте-Карло заканчивает свой рабочий день примерно равными числами «красного» и «черного».
Что же касается систематического выигрыша в такие игры, как преферанс, то он может быть лишь в том случае, если один игрок играет лучше другого. А «лучше» – это значит, что он сознательно или подсознательно правильно оценивает вероятность расклада карт, вероятность прикупа нужной карты и прочее.
Еще одно воспоминание. Тоже порядочно лет назад мы отдыхали с одним из крупнейших физиков нашего века, Львом Давидовичем Ландау. Ландау, или, как мы его звали, Дау, в карты никогда не играл, и чувство азарта ему знакомо не было. Но как-то раз его уговорили принять участие в довольно глупой карточной игре, которая называется «Спекуляция». Банк в этой игре забирает тот, у кого на руках старший козырь. Все партнеры по очереди открывают свои карты. Допустим, открылась дама бубен: бубны козырь. Дама выиграет, если среди оставшихся, подлежащих открытию карт не окажется короля или туза бубен. Владелец дамы имеет право продать даму, а любой из партнеров купить ее. Между ними начинается веселая торговля. Даму покупают, а через две карты открывается король, и промахнувшегося покупателя подымают на смех. Нетрудно видеть, что цена, которую можно предложить за даму, может быть строго вычислена. Известно, сколько карт вышло, сколько остается нераскрытыми в колоде, следовательно, можно подсчитать вероятность появления короля и туза. Дау каждый раз проделывал эту работу. А так как считать надо очень быстро, то он был очень сосредоточен и смешно контрастировал с остальными игроками, которые делали из этой игры веселую забаву. Разумеется, никто из нас не соразмерял цены карты с вероятностью того, что она будет перебита последующими картами. Все играли наобум, кроме Дау. К нашему удивлению, через час игры обнаружилось, что Дау в «солидном» выигрыше. Он был очень доволен.
При полной осведомленности, то есть при правильной оценке вероятности события, сумма выигрышей и проигрышей будет стремиться к нулю. Так же как игрок в карты, знаток лошадей на бегах может обыграть других лиц только в том случае, если он оценивает вероятности события правильно, а они ошибаются.