Категории
Самые читаемые
onlinekniga.com » Научные и научно-популярные книги » Научпоп » Алекс в стране чисел. Необычайное путешествие в волшебный мир математики - Алекс Беллос

Алекс в стране чисел. Необычайное путешествие в волшебный мир математики - Алекс Беллос

Читать онлайн Алекс в стране чисел. Необычайное путешествие в волшебный мир математики - Алекс Беллос

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 3 4 5 6 7 8 9 10 11 ... 84
Перейти на страницу:

Числа у мундуруку таковы:

один пюг два ксеп ксеп три ебапюг четыре ебадипдип пять пюг погби

Когда на экране появлялась одна точка, мундуруку говорили пюг.

Когда точек было две, они произносили ксеп ксеп. Но после двух они выражались уже не так определенно. Когда появлялись три точки, слово ебапюг сказали только около 80 процентов испытуемых. Слово ебадипдип было реакцией на четыре точки только в 70 процентах случаев. Когда же индейцам показывали пять точек, пюг погби произнесли только 28 процентов из них, а 15 процентов ответили ебадипдип. Таким образом, слова, используемые мундуруку для чисел начиная с трех, были на самом деле просто оценками. Они считают как «один», «два», «околотрех», «околочетырех», «околопяти». Пика начал задумываться, в самом ли деле слово пюг погби, буквально означающее «пригоршня», можно отнести к словам для обозначения чисел. Может быть, на самом деле мундуруку умели считать не до пяти, а только до «околочетырех»?

Пика также заметил интересное лингвистическое свойство используемых мундуруку слов для обозначения чисел. Он обратил мое внимание, что в словах от одного до четырех число слогов в каждом слове равно самому числу. Это наблюдение привело его в немалое волнение. «Выглядит так, будто слоги — способ счета „на слух“», — сказал он. Подобно тому как римляне использовали для счета знаки I, II, III и IIII, но для пятерки переходили на V, мундуруку начинают с одного слога для единицы, добавляют еще один слог для двойки, еще один для тройки, еще один для четырех, но не используют пяти слогов для числа 5. Несмотря на то что слова для обозначения чисел 3 и 4 не всегда применяются точно, они содержат точное число слогов. Когда число слогов становится более не важным, слово уже может вовсе и не быть словом для обозначения числа. «Это потрясающе, поскольку, по-видимому, подтверждает мысль о том, что люди обладают интуитивной числовой системой, которая способна к отслеживанию только до четырех точных объектов одновременно», — говорит Пика.

Пика также изучал способности мундуруку к оценке больших чисел. В одном эксперименте испытуемым показывали компьютерную анимацию: на экране два набора точек ссыпались в банку. Потом индейцев просили сказать, верно ли, что эти два набора точек — упавшие в банку и теперь невидимые, — взятые вместе, превосходят третий набор точек, который в следующий момент появлялся на экране. Таким способом Пика проверял, могли ли индейцы приближенно выполнять сложение. Оказалось, что очень даже могли, причем ничуть не хуже, чем группа взрослых французов, выполнявших то же задание.

В другом эксперименте Пика показывал на экране компьютера анимацию, на которой сначала шесть точек падали в банку, а потом четыре точки вылетали из нее. Затем он просил мундуруку выбрать один из трех ответов на вопрос о том, сколько точек осталось в банке. Другими словами, нужно было ответить на вопрос, чему равно 6 - 4. Тест был нацелен на то, чтобы узнать, понимают ли мундуруку числа, для которых у них нет слов. Индейцы не смогли выполнить это задание. Когда им показывали анимацию с вычитанием с участием шести, семи или восьми точек, решение задачки от них ускользало.

Результаты этих экспериментов с точками показали, что мундуруку довольно неплохо обращаются с приближенными количествами, но абсолютные профаны в том, что касается точных величин, превосходящих пять. Пика был совершенно зачарован обнаруженным таким образом сходством между мундуруку и представителями западной цивилизации: и у тех и у других имеется полнофункциональная точная система для операций с малыми числами и приближенная система для оценок больших чисел. Существенная же разница заключается в том, что мундуруку даже не пытались соединить эти две независимые системы друг с другом, чтобы охватить числа, лежащие дальше чем число 5. Пика заметил, что это, вероятно, связано с тем, что подобное раздельное существование двух систем оказалось полезней для жизни мундуруку. Он предположил, что в интересах культурного многообразия важно постараться сохранить используемый мундуруку способ счета, потому что его существованию, очевидно, угрожают контакты между индейцами и другими жителями Бразилии, которые год от года становятся все более и более интенсивными.

Тем не менее тот факт, что некоторые мундуруку освоили счет по-португальски, но при этом по-прежнему не могут справиться с простой арифметикой, говорит о том, насколько сильна их собственная математическая система и как хорошо она приспособлена к их потребностям. Отсюда также видно, насколько нетривиален тот концептуальный скачок, который необходимо сделать, чтобы начать должным образом воспринимать точные числа выше пяти.

* * *

Другое направление работы Станисласа Деэна — это исследование состояния, называемого дискалькулия, или «числовой дальтонизм», при котором нарушено восприятие чисел. По оценкам, оно может наблюдаться у 3–6 процентов населения. Подверженные дискалькулии не «ухватывают» числа так, как это делают большинство людей. Например, какое из этих двух чисел больше:

65 или 24?

Что ж тут сложного, скажете вы, конечно 65. Почти каждый из нас найдет правильный ответ менее чем за полсекунды. Но если у вас дискалькулия, то, чтобы ответить на этот вопрос, вам понадобится не менее трех секунд. Люди могут быть подвержены этому состоянию в разной степени, но те, кому все же поставлен диагноз «дискалькулия», как правило, часто испытывают сложности в установлении корреляций между символами для чисел (например, 5) и самими числами, представляемыми этими символами. Кроме того, им трудно считать. Дискалькулия не означает полную неспособность считать, но те, кто страдает ею, как правило, лишены фундаментальных интуитивных навыков в отношении чисел и вместо этого полагаются на альтернативные стратегии, позволяющие справляться с числами в быту, например чаще используя пальцы. В тяжелых случаях страдающие дискалькулией с трудом определяют время, глядя на часы.

Если вы отлично успевали в школе по всем предметам, кроме математики, вы вполне можете оказаться дискалькуликом. (Впрочем, если у вас с математикой всегда было плохо, то вряд ли вы возьметесь читать эту книгу.) Это состояние считается главной причиной неспособности к математическому мышлению. Понимание дискалькулии имеет актуальное социальное содержание, потому что люди, малоспособные к восприятию чисел, с гораздо большей вероятностью испытывают трудности при поиске работы или подвергаются различного рода дискриминации. Дискалькулия плохо изучена. Ее можно воспринимать как «числовой аналог» дислексии; оба этих состояния похожи тем, что затрагивают примерно одинаковый процент людей и, по-видимому, не влияют на уровень интеллекта в целом. Однако о дислексии известно гораздо больше, чем о дискалькулии. Имеются даже оценки, согласно которым научных статей по дислексии примерно в десять раз больше, чем статей по дискалькулии. Одна из причин того, почему исследования дискалькулии так сильно отстают, заключается в том, что имеется также много других причин, из-за которых человек может оказаться не в ладах с математикой, — эту науку часто плохо преподают в школе, по математике легко отстать, если вы пропустили много занятий, на которых объясняются ключевые концепции. Помимо этого, в социальном плане скорее допустимо плохо управляться с числами, чем плохо уметь читать.

Невролог Брайен Баттеруорт из Университетского колледжа в Лондоне часто пишет рекомендации для людей, которых он проверил на дискалькулию, объясняя потенциальным работодателям, что плохие оценки по математике в школьном аттестате не являются результатом лени или отсутствия умственных способностей. Дискалькулики могут добиваться высоких достижений во всех других областях, кроме мира чисел. Возможно даже, говорит Баттеруорт, быть дискалькуликом и при этом добиваться успехов в математике. Имеется несколько областей математики, такие как логика и геометрия, где приоритет отдается дедуктивным рассуждениям или пространственному воображению, а не числам и уравнениям. В целом, однако, дискалькулики вообще плохо успевают по математике.

Значительная часть исследований по дискалькулии — бихевиористские. Например, компьютерное тестирование десятков тысяч школьников. Во время тестов они должны просто сказать, какое из двух предложенных чисел больше. Некоторые исследования — неврологические, в них сравниваются сделанные с помощью метода магнитного резонанса изображения мозга людей, страдающих и не страдающих дискалькулией, чтобы увидеть, как различаются протекающие в них токи. В когнитивных науках продвижение в понимании различных умственных способностей часто происходит как результат изучения случаев нарушения данной способности. Постепенно формируется более ясная картина того, что же представляет собой дискалькулия, и того, как работает мозг в процессе восприятия чисел.

1 ... 3 4 5 6 7 8 9 10 11 ... 84
Перейти на страницу:
На этой странице вы можете бесплатно читать книгу Алекс в стране чисел. Необычайное путешествие в волшебный мир математики - Алекс Беллос.
Комментарии