О принципе противоречия у Аристотеля. Критическое исследование - Ян Лукасевич
Шрифт:
Интервал:
Закладка:
32
Этот постулат в современной литературе формулируется так: в плоскости через точку, не лежащую на данной прямой, можно провести только одну прямую, параллельную данной.
33
См. [Васильев 1912] и [Васильев 1913].
34
Как следует из [Raspa 1999, примечание 88], первым, кто на Западе обратил внимание на эти работы, был ученик Лукасевича Антоний Корчик [Korcik 1955]. Однако известность идеям Васильева на Западе принесла статья В.А. Смирнова [Смирнов 1962], которая была прореферирована Д. Коми [Comey 1965].
35
См. также [Carus 1910b]. На это обратил внимание В.А. Бажанов в [Bazhanov 1992], где он пишет о влиянии Пирса на логические работы Васильева. Интересно, что в [Бажанов 2009] об этом не сказано ни слова. Данная тематика со ссылкой на [Bazhanov 1992] обсуждается также в [Raspa 1999].
36
Принцип исключенного третьего (лат. tertium non datur) Лукасевич формулирует так: два противоречащих высказывания не являются одновременно ложными, а следовательно, одно из них должно быть истинным.
37
В книге имеется ряд ссылок на А. Мейнонга; в данном случае см. гл. XVII. Интересно, что Мейнонг во втором издании своей известной работы «Uber Annahmen» (Leipzig, 1910: 228) цитирует абстракт [Łukasiewicz 1910b] данной книги Лукасевича.
38
На самом деле для этого еще не пришло время, поскольку логическая техника не было достаточно развита и осмыслена, чтобы уметь работать с противоречиями. Только в 1948 г., другим выдающимся представителем Львовско-Варшавской школы, а именно С. Яськовским, была сконструирована первая система паранепротиворечивой логики (см. английский перевод в [Jaskowski 1967]).
39
Данная статья является переводом Лесьневским своей работы из “Przegląnd filozoficzny», № 2 за 1912 год. Как сказано в предисловии, при переводе с польского эта работа подверглась «дополнениям и иным изменениям».
40
В современной формулировке это звучит так: не существует формулы A такой, чтобы A и A были теоремами.
41
В 1930 г. Лукасевич совместно с А. Тарским дает строгое определение понятия логической матрицы, которое обобщается на случай для многозначной логики [Łukasiewicz 1930/1970: 141]. В последующем истинностные значения многозначных логик зачастую стали интерпретироваться как степени истинности.
42
Стоит отметить, что уже в 1913 г. в статье о логических основаниях теории вероятностей Лукасевич вводит понятие «неопределенных высказываний, которые ни истинны и ни ложны» [Łukasiewicz 1913/1970: 38]. Об истории введения в логику третьего истинностного значения в польской школе логиков см. [Woleński 2001]. Интересно, что до сих пор идет дискуссия, является ли Н.А. Васильев одним из создателей трехзначной логики, введя деление суждений “по качеству” на утвердительные, отрицательные и индифферентные (см., например, [Бирюков и Шуранов 1998]), что позволило ему сформулировать принцип исключенного четвертого относительно таких суждений. У Лукасевича также наблюдается новое деление суждений, но это деление проводится “по типу” истинностных значений: истинные, ложные и возможные (неопределенные), что и привело к созданию трехзначной логики. У Васильева нет и намека на введение нового истинностного значения. Поэтому правильней было бы говорить о многомерных логиках (n-мерных) логиках Васильева, что и было проделано В.А. Смирновым (см. [Смирнов 1993]).
43
Заметим, что в 1910 г. Лукасевич делает доклад, где ограничивается применимость принципа исключенного третьего (см. [Лукасевич 2006]).
44
Статья «О детерминизме» является переработкой ректорской речи, произнесенной Лукасевичем в Варшавском университете на торжественном открытии 1922/1923 учебного года и впервые опубликованной в 1961 г. на польском языке (см. [Лукасевич 2012с]. О публикациях на английском и русском языках см. примечание 1 в настоящей книге к статье «О детерминизме».
45
Подробно об этом см. в [Карпенко 1990].