Категории
Самые читаемые
onlinekniga.com » Научные и научно-популярные книги » Физика » 2. Пространство. Время. Движение - Ричард Фейнман

2. Пространство. Время. Движение - Ричард Фейнман

Читать онлайн 2. Пространство. Время. Движение - Ричард Фейнман

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 3 4 5 6 7 8 9 10 11 ... 25
Перейти на страницу:

Но ведь чтобы встретиться и помериться годами, Пауль должен либо остановиться в конце путешествия и сравнить часы, либо, еще проще, вернуться. А возвратиться может только тот, кто двигался. И он знает о том, что двигался, потому что ему пришлось повернуть, а при повороте на корабле произошло много необычных вещей: заработали ракеты, пред­меты скатились к одной стенке и т. д. А Петер ничего этого не испытал.

Поэтому можно высказать такое правило: тот, кто почув­ствовал ускорение, кто увидел, как вещи скатывались к стенке, и т. д.,— тот и окажется моложе. Разница между братьями имеет «абсолютный» смысл, и все это вполне правильно. Когда мы обсуждали долгую жизнь движущегося мю-мезона, в ка­честве примера мы пользовались его прямолинейным движением сквозь атмосферу. Но можно породить мю-мезоны и в лаборатории и заставить с помощью магнита их двигаться по кругу. И даже при таком ускоренном движении они проживут дольше, причем столько же, сколько и при прямолинейном движении с этой скоростью. Можно было бы попытаться разрешить парадокс опытным путем: сравнить покоящийся мю-мезон с закрученным по кругу. Несомненно, окажется, что закру­ченный мю-мезон проживет дольше. Такого опыта еще никто не ставил, но он и не нужен, потому что и так все прекрасно согласуется. Конечно, те, кто настаивает на том, что каждый отдельный факт должен быть непосредственно проверен, этим не удовлетворятся. А мы все же уверенно беремся предсказать результат опыта, в котором Пауль кружится по замкнутому кругу.

§ 3. Преобразование скоростей

Главное отличие принципа относительности Эйнштейна от принципа относительности Ньютона заключается в том, что законы преобразований, связывающих координаты и времена в системах, движущихся относительно друг друга, различны.

Правильный закон преобразований (Лоренца) таков:

Эти уравнения отвечают сравнительно простому случаю, когда наблюдатели движутся относительно друг друга вдоль общей оси х. Конечно, мыслимы и другие направления движения, но самое общее преобразование Лоренца выглядит довольно сложно: в нем перемешаны все четыре числа. Мы и впредь будем пользоваться этой простой формулой, так как она содержит в себе все существенные черты теории относительности.

Рассмотрим теперь дальнейшие следствия этого преобра­зования. Прежде всего интересно разрешить эти уравнения относительно х, у, z, t. Это система четырех линейных урав­нений для четырех неизвестных, и их можно решить — вы­разить х, у, z, t через х', у', z', t'. Результат этот потому ин­тересен, что он говорит нам, как «покоящаяся» система коор­динат выглядит с точки зрения «движущейся». Ясно, что из-за относительности движения и постоянства скорости тот, кто «движется», может, если пожелает, счесть себя неподвижным, другого — движущимся. А поскольку он движется в обратную сторону, то получит то же преобразование, но с противоположным знаком у скорости. Это в точности то, что дает и прямое решение системы, так что все сходится. Вот если бы не сошлось, было бы от чего встревожиться!

Теперь займемся интересным вопросом о сложении скоростей в теории относительности. Напомним, что первоначально загадка состояла в том, что свет проходит 300 000 км/сек во всех системах, даже если они движутся друг относительно друга. Это — частный случай более общей задачи. Приведем пример. Пусть предмет внутри космического корабля движется вперед со скоростью 200 000 км/сек; скорость самого корабля тоже 200 000 км/сек. С какой скоростью перемещается предмет с точки зрения внешнего наблюдателя? Хочется сказать: 400 000 км/сек, но эта цифра уж больно подозрительна: полу­чается скорость большая, чем скорость света! Разве можно себе это представить?

Общая постановка задачи такова. Пусть скорость тела внутри корабля равна v (с точки зрения наблюдателя на корабле), а сам корабль имеет скорость и по отношению к Земле. Мы желаем знать, с какой скоростью vxэто тело движется с точки зрения земного наблюдателя. Впрочем, это тоже не самый общий случай, потому что движение происходит в направ­лении х. Могут быть формулы для преобразования скоростей в направлении у или в любом другом; если они будут нужны, их всегда можно вывести. Внутри корабля скорость тела равна vx' . Это значит, что перемещение х' равно скорости, умноженной на время:

x'=vx·'t'. (16.3)

Остается только подсчитать, какие у тела значения х и t с точки зрения внешнего наблюдателя, если х' и t' связаны соотношением (16.3). Подставим (16.3) в (16.2) и получим

Но здесь х выражено через t'. А скорость с точки зрения внеш­него наблюдателя — это «его» расстояние, деленное на «его» время, а не на время другого наблюдателя! Значит, надо и время подсчитать с его позиций

А теперь разделим х на t. Квадратные корни сократятся, останется же

Это и есть искомый закон: суммарная скорость не равна сумме скоростей (это привело бы ко всяким несообразностям), но «подправлена» знаменателем 1+uv/c2.

Что же теперь будет получаться? Пусть ваша скорость внут­ри корабля равна половине скорости света, а скорость корабля тоже равна половине скорости света. Значит, и u равно 1/2с, и v равно 1/2c, но в знаменателе uv равно 1/4, так что

Выходит по теории относительности, что 1/2и 1/2 дают не 1, a 4/5. Небольшие скорости, конечно, можно складывать, как обычно, потому что, пока скорости по сравнению со скоростью света малы, о знаменателе (1 +uv/с2) можно забыть, но на больших скоростях положение меняется.

Возьмем предельный случай. Положим, что человек на борту корабля наблюдает, как распространяется свет. Тогда v=c. Что обнаружит земной наблюдатель? Ответ будет такой:

Значит, если что-то движется со скоростью света внутри ко­рабля, то, с точки зрения стороннего наблюдателя, скорость не изменится, она по-прежнему будет равна скорости света! Это именно то, ради чего в первую очередь предназначал Эйн­штейн свою теорию относительности.

Конечно, бывает, что движение тела не совпадает по на­правлению с равномерным движением корабля. Например, тело движется «вверх» со скоростью vy' по отношению к ко­раблю, а корабль движется «горизонтально». Проделывая такие же манипуляции (только х надо заменить на у), получаем

y=y'=vy't', так что при vx'=0

Итак, боковая скорость тела уже не vy' , a vy'Ц(1-u22). Этот результат мы получили, пользуясь формулами преобра­зований. Но он вытекает и прямо из принципа относительности по следующей причине (всегда бывает полезно докопаться до первоначальной причины). Мы уже раньше рассуждали (см. фиг. 15.3) о том, как могут работать движущиеся часы; свет ка­жется распространяющимся наискось со скоростью с в непо­движной системе, в то время как в движущейся системе он просто движется вертикально с той же скоростью. Мы нашли, что верти­кальная, компонента скорости в неподвижной системе меньше скорости света на множитель Ц(1-u2/с2) [см. уравнение (15.3)]. Пусть теперь материальная частица движется в тех же «часах» взад-вперед со скоростью, равной 1/n скорости света (фиг. 16.1).

Фиг.16.1.Траектории светового луча и частицы внутри движущихся часов.

Пока частица пройдет туда и обратно, свет пройдет этот путь ровно n раз (n — целое число). Значит, каждое тиканье «часов с частицей» совпадет с n-м тиканьем «световых часов». Этот факт должен остаться верным и тогда, когда тело движется, потому что физическое явление совпадения остается совпа­дением в любой системе. Ну а поскольку скорость суменьше скорости света, то скорость vyчастицы должна быть меньше соответствующей скорости в том же отношении (с квадратным корнем)! Вот почему в любой вертикальной скорости появ­ляется корень.

1 ... 3 4 5 6 7 8 9 10 11 ... 25
Перейти на страницу:
На этой странице вы можете бесплатно читать книгу 2. Пространство. Время. Движение - Ричард Фейнман.
Комментарии