Самое грандиозное шоу на Земле: доказательства эволюции - Ричард Докинз
Шрифт:
Интервал:
Закладка:
Представьте, что инженер представил бы позднему Гельмгольцу цифровую камеру с экраном из крошечных фотоэлементов, собранную для съемки изображений, проецируемых на поверхность экрана. Довольно разумно и очевидно, что каждый фотоэлемент имеет провод, соединенный с компьютером, где собирается изображение. Снова же, довольно разумно. Гельмгольц не отправил бы его обратно.
Но теперь, представьте, что я скажу вам, что фотоэлементы глаза направлены назад, в обратную сторону от сцены, на которую смотрят. "Провода" соединяющие светочувствительные клетки с мозгом идут через всю поверхность сетчатки, так что световые лучи должны пройти через ковер собравшихся проводков перед тем, как попасть на светочувствительные клетки. Это неразумно, но все и того хуже. Одно из последствий того, что светочувствительные клетки направлены назад - то, что провода, передающие данные от них, должны как-то пройти через сетчатку назад к мозгу. В глазу позвоночного они собираются к особому отверстию в сетчатке, где ныряют сквозь нее. Отверстие, заполненное нервами, называется слепым пятном, поскольку оно не видит, но "пятно" - это слишком мягко сказано, поскольку оно весьма велико, скорее, как слепая область, что тем не менее не является слишком большим неудобством для нас благодаря "автоматическому фотошопу" мозга. И снова, верните его [инструмент] назад, он не просто плохо спроектирован, это дизайн полного идиота.
Человеческий глаз
Часть 'фотоэлементов' (палочки и колбочки)Или нет? Будь это так, глаз бы ужасно видел, но это не так. Он, в действительности, очень хорош. Он хорош потому, что естественный отбор, как чистильщик, работая над бесчисленным множеством мелких деталей, прошелся после большой исходной ошибки установки сетчатки задом наперед и спас высококачественный точный инструмент. Это напоминает мне сагу о телескопе Хаббла. Вы помните, он был запущен в 1990 году и, обнаружилось, что он имеет крупный дефект. Из-за незамеченной ошибки в калибровке аппарата, когда его полировали на земле, основное зеркало хотя и немного, но [функционально-] значимо отклонялось от нужной формы. Дефект обнаружился после того, как телескоп был запущен на орбиту. Решение было смело и изобретательно. Астронавты, доставленные на телескоп, успешно смонтировали на нем нечто вроде очков. После этого телескоп заработал очень хорошо, и три последующих сервисных миссии обеспечили дальнейшее улучшение. Я хочу сказать, что даже крупный дефект конструкции, грубая ошибка может быть скорректирована последующей починкой, искусность и тонкость которой при соответствующих обстоятельствах совершенно компенсируют исходную ошибку. В эволюции в основном крупные мутации, даже если они могут привести к улучшению в правильном направлении, почти всегда требуют много дальнейших поправок, операций по зачистке множеством мелких мутаций, возникающих позднее и получающих преимущество при отборе, поскольку сглаживают острые кромки, оставленные исходной крупной мутацией. Вот почему люди и ястребы видят так хорошо, несмотря на грубую ошибку в их исходной конструкции. Снова Гельмгольц:
Глаз имеет все возможные дефекты, которые могут быть найдены в оптическом инструменте, и даже несколько специфичных только для него; но они так скомпенсированы, что неточность получаемого изображения при обычных условиях освещения очень незначительно превышает ограничения чувствительности, устанавливаемые размерами колбочек сетчатки. Но коль скоро мы делаем опыты в каких-либо других условиях, нам становятся заметны хроматическая аберрация, астигматизм, слепое пятно, сосудистые тени, несовершенная прозрачность среды и все другие дефекты, о которых я говорил.
НЕРАЗУМНЫЙ ДИЗАЙНТакая картина крупных ошибок конструкции, скомпенсированных дальнейшими починками - это то, чего мы не должны ожидать там, где была действительно работа дизайнера. Мы можем ожидать случайные ошибки, как со сферической аберрацией в случае зеркала Хаббла, но не очевидную глупость, как в случае сетчатки, развернутой задом наперед. Грубые ошибки такого рода идут не от плохого дизайна, а от истории.
Любимый пример, с тех пор, как мне на него указал профессор Дж. Д. Кури, когда учил меня в моем студенчестве, это возвратный гортанный нерв. Это ответвление одного из черепных нервов, нервов, которые идут напрямую от мозга, а не из спинного мозга. Один из черепных нервов, блуждающий (vagus, и наименование уместно), имеет разные ответвления, два из которых идут к сердцу, и два на каждой стороне - к гортани (голосовая коробка у млекопитающих). На каждой стороне шеи одна из ветвей гортанного нерва проходит напрямую в гортань, следуя прямым путем, таким, какой выбрал бы дизайнер. Другой идет к гортани через странный обходной крюк. Он спускается прямо до груди, делает петлю вокруг одной из основных артерий, выходящих из сердца (разные артерии на левой и правой стороне, но принцип один), и направляется назад вверх по шее к своей конечной цели.
Если вы думаете, что это продукт дизайна, возвратный гортанный нерв - это позор. Гельмгольц имел бы еще больше причин вернуть его назад, чем в случае с глазом. Но, как и в случае с глазом, все это вполне понятно, как только вы забудете дизайн и вместо этого подумаете об истории. Чтобы понять ее, вы должны пойти назад ко времени, когда наши предки были рыбами. У рыб сердце двухкамерное, в отличие от нашего четырехкамерного. Оно качает кровь через большую центральную артерию, именуемую вентральной [брюшной] аортой. От вентральной аорты обычно отходит шесть пар ответвлений, ведущих к шести жабрам на каждой стороне. Кровь проходит через жабры, где насыщается кислородом. Над жабрами она собирается другими шестью парами кровеносных сосудов в еще один большой сосуд, идущий вниз в середину, называемый дорсальной [спинной] аортой, которая питает остальную часть тела. Шесть пар жаберных артерий - свидетельство сегментированного плана тела позвоночных, которое яснее и более очевидно у рыб, чем у нас. Восхитительно, но оно очень наглядно у человеческих эмбрионов, чьи фарингеальные дуги очевидно получились из предковых жабр, что можно сказать, глядя на их детальную анатомию. Конечно, они не функционируют в качестве жабр, но 5месячные человеческие эмбрионы могут быть сочтены за маленьких розовых рыбок с жабрами. Трудно не удивиться, почему киты, дельфины, дюгони и ламантины не ре-эволюционировали функциональные жабры. Факт, что, как и все млекопитающие, они имеют в фарингеальных дугах эмбриональный каркас для выращивания жабр, предполагает, что это не должно быть слишком сложно. Я не знаю, почему они не сделали этого, но я уверен, что есть хорошая причина, и что кто-то уже знает это или знает, как это исследовать.
Глоточные арки в человеческом эмбрионе
Все позвоночные имеют сегментированный план тела, но у взрослых млекопитающих, в отличие от их эмбрионов, это заметно только в области спины, где позвонки и ребра, кровеносные сосуды, мускульные блоки и нервы, все следует рисунку модульного повторения вдоль тела спереди назад. Каждый сегмент позвоночного столба имеет два больших нерва, ответвляющихся от спинного мозга на каждой стороне, называемые брюшным [дорсальными] и спинным [вентальными] корешками. Эти нервы в основном делают свою работу, какой бы она ни была, поблизости от позвонков, из которых выходят, но некоторые уходят вниз вдоль ног и рук.
Голова и шея тоже следуют тому же сегментированному плану, но его сложнее различить даже у рыб, поскольку сегменты вместо того, чтобы быть аккуратно выложенными в продольный массив, скомканы в кучу за время эволюции. Одним из триумфов сравнительной анатомии и эмбриологии 19-го и начала 20-го столетия было распознание призрачных следов сегментов головы. Например, первая жаберная дуга у бесчелюстных рыб, таких как миноги (и у эмбрионов позвоночных, которые имеют челюсти) соответствует челюстям у позвоночных, у которых они есть (то есть, у всех современных позвоночных, кроме миног и миксин).
Насекомые и другие членистоногие, такие как ракообразные, которых мы видели в главе 10, также имеют сегментированный план тела. И аналогичным триумфом было показать, что голова насекомых также содержит - снова же скомканные - шесть сегментов того, что когда-то у далеких предков было цепочкой из модулей, таких же, как и все остальное тело. Триумфом эмбриологии и генетики конца 20 века было показать, что сегментация насекомых и позвоночных вовсе не независима друг от друга, как меня учили, и даже управляется параллельными наборами генов, так называемых hox-генов, которые опознаваемо сходны у насекомых, позвоночных и многих других животных, и что эти гены даже расположены в правильном последовательном порядке на хромосомах! Это нечто, что мои учителя даже не могли представить, когда я был студентом, изучающим раздельно сегментации позвоночных и насекомых. Животные различных классов (например, насекомые и позвоночные) более едины, чем мы когда-либо считали. И это также из-за единых прародителей. Hox-план был уже набросан в великом предке всех животных с двусторонней симметрией. Все животные гораздо более близкие кузены друг другу, чем мы привыкли думать.