КОМПАС-3D V10 на 100 % - Максим Кидрук
Шрифт:
Интервал:
Закладка:
В качестве направляющей снова возьмем спираль с такими параметрами:
• способ построения – По числу витков и высоте;
• базовая плоскость спирали – проходит через ось колеса, перпендикулярно оси червяка (в модели это плоскость XY);
• центр спирали (точка привязки) – точка пересечения оси червяка и базовой плоскости, то есть точка, лежащая на оси червяка и имеющая координаты (0; 240);
• начало витков – в плоскости эскиза, то есть в средней плоскости колеса, для каждой спирали определяется отдельно;
• диаметр спирали – делительный диаметр червяка (80 мм);
• угол подъема спирали – угол подъема винтовой линии червяка (из него вычисляется шаг);
• количество витков – 0,25.
Это настройки первой спирали. Точно такую же кривую надо построить по другую сторону от базовой плоскости (направление витков противоположное).
Однако, это все в идеале. В случае построения по описанному выше алгоритму, поднимаясь по спирали, эскиз «выходит» из тела венца, что приводит к тому, что вырезы сужаются на торцах колеса (зубья, соответственно, расширяются). При сборке такого колеса с червяком эти зубья врезаются в витки червяка на краях его нарезной части. Я решил эту проблему следующим образом: центр спирали необходимо немного сместить на величину x вверх от оси червяка, при этом диаметр спирали увеличить на 2x. Таким образом, зацепление не нарушается, а вырезание витков проходит по дугам чуть большего радиуса, чем прежде. Это приводит к тому, что эскиз не так резко будет подниматься вверх и сам подрежет кромки на торцах зубьев колеса. Описанную выше проблему можно было бы также решить, если бы во время кинематической операции можно было задавать уклон, как при операции выдавливания, но такой возможности пока в КОПМАС-3D, к сожалению, нет.
Исходя из всего вышеизложенного, попробуем построить спирали.
Выделите плоскость XY и запустите команду Спираль цилиндрическая панели Пространственные кривые. Выберите соответствующий способ построения и задайте количество витков равное 0,25. Ординату базовой точки увеличьте на 15 мм от требуемой (с 240 до 255 мм), а диаметр задайте равным 110 мм (на 30 мм больше делительного диаметра червяка), чтобы не нарушить зацепление. Для вычисления высоты спирали воспользуемся зависимостью h = P · n = π · m · n, где n – количество витков. Подставляя имеющиеся у нас значения, мы получим высоту спирали – 6, 283 мм. Все остальные настройки оставьте заданными по умолчанию и создайте спираль.
Постройте еще одну спираль на этой же плоскости. Точку привязки, количество витков, высоту, направление навивки витков и диаметр установите такими же, как и у предыдущего объекта, измените только направление построения с прямого на обратное. Если вы все правильно настроили, обе спирали должны сходиться в одной точке на плоскости эскиза профиля выреза между зубьями (рис. 3.146).
Рис. 3.146. Направляющая (две стыкующиеся дуги спиралей) для вырезания зубьев червячного колеса
Теперь дважды выполните операцию Вырезать кинематически панели Редактирование детали, используя эскиз профиля выреза и спирали-направляющие. Несмотря на то, что эскиз после выполнения первого выреза войдет в состав операции (в дереве модели будет дочерним узлом узла Вырезать кинематический элемент:1), вы можете использовать его повторно для формирования второго полувыреза. Постройте также четыре отверстия диаметром 10 мм в нижней части обода так, чтобы их центры лежали точно на окружности края обода (рис. 3.147). Отверстия создайте с помощью вырезания выдавливанием, эскиз операции разместите на торцевой поверхности колеса, а глубину выдавливания установите равной 25 мм.
Рис. 3.147. Первый вырез между зубьями червячного колеса и отверстие под фиксирующий винт
Создайте конструктивную ось конической поверхности (совпадающую с осью колеса), после чего с помощью операции Массив по концентрической сетке панели Редактирование детали сформируйте венец червячного колеса (рис. 3.148). Копировать необходимо обе кинематические операции, составляющие вырез между зубьями, количество копий в кольцевом направлении установить равным 50. Не забудьте скрыть все вспомогательные объекты в модели: обе спирали и конструктивную ось.
Рис. 3.148. 3D-модель обода червячного колеса
Теперь постройте модель ступицы и фиксирующего винта. Винт мы не вставляем из библиотеки, потому что после привинчивания обода к ступице головки винтов спиливаются, а сами винты после этого еще нужно и раскернить. По этой причине мы сразу смоделируем винт в спиленном состоянии.
Модель ступицы вы можете выполнить произвольно, не ограничивая себя какими-либо точными размерами, за исключением того, что верхняя часть эскиза вращения основания ступицы должна точно дополнять нижнюю часть аналогичного эскиза обода (рис. 3.149). Кроме того, выступ на диске ступицы, который входит в паз на ободе, должен быть чуть ниже, чем высота этого паза.
Рис. 3.149. Эскиз для создания основания ступицы червячного колеса
Добавьте в модель круглые вырезы в диске, шпоночный паз и отверстия под винты (их эскиз должен быть точно таким, как и в ободе), после чего сохраните модель на жесткий диск (рис. 3.150).
Рис. 3.150. 3D-модель ступицы червячного колеса
Все детали готовы, и вы можете приступить к сборке. Несмотря на то, что червячное колесо – это составная единица, очень редко в сборке приходится разбирать или перемещать входящие в него компоненты по отдельности. По этой причине советую сначала создать сборку Червячное колесо.a3d, в которой соединить обод и ступицу, а также создать массив по кругу из четырех винтов. Винт необходимо вставить так, чтобы он немного торчал над диском.
После этого создайте новую сборку под именем Червячное зацепление.a3d и соберите в ней червячное колесо с валом-червяком. Как и при сборке зубчатого зацепления, вам достаточно будет вставить модель червяка и сборку колеса в точку начала координат и зафиксировать их, поскольку мы изначально проектировали все детали передачи таким образом, чтобы зацепление получилось автоматически (рис. 3.151).
Рис. 3.151. 3D-модель червячной передачи с верхним размещением червяка
Файлы всех моделей, входящих в сборку червячного колеса, находятся на прилагаемом к книге компакт-диске в папке ExamplesГлава 3Червячное зацеплениеЧервячное колесо. Сам файл Червячное колесо.a3d и сборка всей передачи (файл Червячное зацепление.a3d) размещены в папке ExamplesГлава 3Червячное зацепление.
Модель из листового металла
Деталь, рассмотренная в данном примере, не обладает какими-либо особенностями. Этот пример приведен для того, чтобы продемонстрировать основные принципы и возможности модуля проектирования изделий из листового металла. Функционал этого модуля хоть и предназначен для построения твердых тел, но существенно отличается от прочих трехмерных формообразующих операций трехмерного редактора КОМПАС-3D. С его помощью можно получать модели, которые в реальном производстве изготавливаются с помощью гибки, ковки, штамповки и пр. Конечно, эти же модели можно выполнить и с помощью обычных трехмерных операций, однако команды панели Элементы листового тела позволяют строить их значительно быстрее, имитируя перечисленные выше процессы деформирования заготовок из листового металла.
Попробуем выполнить корпусную деталь какого-либо электроприбора или другого механизма. Точное назначение этой детали, как и ее размеры, нам сейчас не столь важны, главное – это научиться на практике применять функционал команд для создания листовых элементов.
1. Создайте новый документ КОМПАС-Деталь, сохраните его под именем Корпус (листовой металл).m3d, а на компактной панели активизируйте панель Элементы листового тела (мы будем работать с командами этой панели).
2. Создайте в эскизе на плоскости XY изображение прямоугольника, точка пересечения диагоналей которого должна совпадать с центром эскиза и размерами 120 × 60. Для этого можете воспользоваться командой Прямоугольник по центру и вершине на панели инструментов Геометрия. Выйдите из режима редактирования эскиза и нажмите кнопку Листовое тело, пока единственную активную на панели Элементы листового тела. На панели свойств ничего менять не надо, просто нажмите кнопку Создать объект – и вы получите листовую заготовку толщиной 1 мм.
3. Нажмите кнопку Сгиб, при этом в строке подсказок отобразится текст Укажите прямолинейное ребро. Щелкните на одном из ребер верхней грани листового тела. В окне представления появится фантом будущего сгиба.
Примечание
Операция Сгиб имеет большое количество настроек, позволяющих создавать разные и весьма оригинальные трехмерные элементы. Все параметры рассмотреть практически невозможно, поэтому по ходу выполнения примера будем ограничиваться лишь теми параметрами, которые нужны нам для построения. Если вы желаете самостоятельно разобраться в возможностях этой команды, можете сами попробовать изменять различные настройки.