Категории
Самые читаемые
onlinekniga.com » Научные и научно-популярные книги » Математика » Maple 9.5/10 в математике, физике и образовании - Владимир Дьяконов

Maple 9.5/10 в математике, физике и образовании - Владимир Дьяконов

Читать онлайн Maple 9.5/10 в математике, физике и образовании - Владимир Дьяконов

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 71 72 73 74 75 76 77 78 79 ... 125
Перейти на страницу:

• rowspace — вычисляет базис пространства строки;

• rowspan — вычисляет векторы охвата для места столбца;

• rref — реализует преобразование Гаусса-Жордана матрицы;

• scalarmul — умножение матрицы или вектора на заданное выражение;

• singval — вычисляет сингулярное значение квадратной матрицы;

• singularvals — возвращает список сингулярных значений квадратной матрицы;

• smith — вычисляет Шмиттову нормальную форму матрицы;

• submatrix — извлекает указанную подматрицу из матрицы;

• subvector — извлекает указанный вектор из матрицы;

• sumbasis — определяет базис объединения системы векторов;

• swapcol — меняет местами два столбца в матрице;

• swaprow — меняет местами две строки в матрице;

• sylvester — создает матрицу Сильвестра из двух полиномов;

• toeplitz — создает матрицу Теплица;

• trace — возвращает след матрицы;

• vandermonde — создает вандермондову матрицу;

• vecpotent — вычисляет векторный потенциал;

• vectdim — определяет размерность вектора;

• wronskian — вронскиан векторных функций.

Назначение многих функция вполне очевидно из названия. Далее мы рассмотрим более подробно некоторые функции из этого пакета. С деталями синтаксиса (достаточно разнообразного) для каждой из указанных функций можно ознакомиться в справочной системе Maple. Для этого достаточно использовать команду ?name;, где name — имя функции (из приведенного списка).

6.2.2. Интерактивный ввод матриц

Для интерактивного ввода матриц можно, определив размерность некоторого массива, использовать функцию entermatrix:

> с A:=array(1..3,1..3);

А := array(1..3, 1..3, [])

После исполнения этого фрагмента документа диалог с пользователем имеет следующий вид:

> entermatrix(А);

enter element 1,1 > 1;

enter element 1,2 > 2;

enter element 1,3 > 3;

enter element 2,1 > 4;

enter element 2,2 > 5;

enter element 2,3 > 6;

enter element 3,1 > 7;

enter element 3,2 > 8;

enter element 3,3 > 9;

> В:=(%);

> В[1,1];

1

> В[2,2];

5

> В[3,3];

9

6.2.3. Основные функции для задания векторов и матриц

В библиотечном файле linalg имеются следующие функции для задания векторов и матриц:

• vector(n,list) — создание вектора с n элементами, заданными в списке list;

• matrix(n,m,list) — создание матрицы с числом строк n и столбцов m с элементами, заданными списком list.

Ниже показано применение этих функций (файл linalgop):

> V:=vector(3, [12, 34, 56]);

V := [12, 34, 56]

> M:=matrix(2,3, [1,2,3,4]);

> V[2];

34

> М[1, 3];

3

> М[2, 3];

M2,3

Обратите внимание на последние примеры — они показывают вызов индексированных переменных вектора и матрицы.

6.2.4. Работа с векторами и матрицами

Для работы с векторами и матрицами Maple имеет множество функций, входящих в пакет linalg. Ограничимся приведением краткого описания наиболее распространенных функций этой категории.

Операции со структурой отдельного вектора V и матрицы М:

• coldim(M) — возвращает число столбцов матрицы М;

• rowdim(M) — возвращает число строк матрицы М;

• vectdim(V) — возвращает размер вектора V;

• col(M.i) — возвращает i-й столбец матрицы М;

• row(M,i) — возвращает i-ю строку матрицы М;

• minor(M,i,j) — возвращает минор матрицы М для элемента с индексами i и j;

• delcols(M,i..j) — удаляет столбцы матрицы М от i-го до j-го;

• delrows(V,i..j) — удаляет строки матрицы М от i-й до j-й;

• extend(M,m,n,x) — расширяет матрицу М на m строк и n столбцов с применением заполнителя х.

Основные векторные и матричные операции:

• dotprod(U,V) — возвращает скалярное произведение векторов U и V;

• crossprod(U,V) — возвращает векторное произведение векторов U и V;

• norm(V) или norm(M) — возвращает норму вектора или матрицы;

• copyinto(A,B,i,j) — копирует матрицу А в В для элементов последовательно от i до j;

• concat(M1,M2) — возвращает объединенную матрицу с горизонтальным слиянием матриц М1 и М2;

• stack(M1,M2) — возвращает объединенную матрицу с вертикальным слиянием М1 и М2;

• matadd(A,B) и evalm(A+B) — возвращает сумму матриц А и В;

• multiply(A,B) и evalm(A&*B) — возвращает произведение матриц А и В;

• adjoint(M) или adj(M) — возвращает присоединенную матрицу, такую, что M∙adj(M) дает диагональную матрицу, определитель которой есть det(M);

• charpoly(M,lambda) — возвращает характеристический полином матрицы М относительно заданной переменной lambda;

• det(M) — возвращает детерминант (определитель) матрицы М;

• Eigenvals(M,vector) — инертная форма функции, возвращающей собственные значения матрицы М и (при указании необязательного параметра vector) соответствующие им собственные векторы;

• jordan(M) — возвращает матрицу М в форме Жордана;

• hermite(M) — возвращает матрицу М в эрмитовой форме;

• trace(M) — возвращает след матрицы М;

• rank(M) — возвращает ранг матрицы М;

• transpose(M) — возвращает транспонированную матрицу М;

• inverse(M) или evalm(1/M) — возвращает матрицу, обратную к М;

• singularvals(A) — возвращает сингулярные значения массива или матрицы А.

Приведем примеры применения некоторых из этих функций (файл linalgop):

> M:=matrix(2,2, [a,b,с,d]);

> transpose(M);

> inverse(M);

> det(M);

ad - bc

> rank(M);

2

> trace(M);

a + d

> M:=matrix(2,2,[1,2,3,4]);

> ev:=evalf(Eigenvals(M,V));

ev := [-.372281323, 5.372281323]

> eval(V);

> charpoly(M,p);

p² - 5p - 2

> jordan(M);

> A:= array([[1,0,1],[1,0,1],[0,1,0]]);

> singularvals(А);

[0, 2, 1]

В приведенных примерах полезно обратить внимание на то, что многие матричные функции способны выдавать результаты вычислений в аналитическом виде, что облегчает разбор выполняемых ими операций.

6.2.5. Решение систем линейных уравнений

Одной из самых распространенных задач линейной алгебры является решение систем линейных уравнений. Ниже представлен простой пример составления и решения трех систем линейных уравнений с применением функций, входящих в пакет linalg (файл sle):

> with(linalg):

> C:=matrix(3,3,[[4,8,2],[6,2,3],[3,7,11]]);

> B:=matrix(3,1, [5,6,1]);

> A:=evalm(C);

> A1 :=copyinto(В, С, 1, 1);

> C:=evalm(A):А2:=copyinto(В,С,1,2);

> C:=evalm(A):A3:=copyinto(В,С,1,3);

> x1:=det(A1)/det(А);

> x2:=det(A2)/det(A);

> x3:=det(A3)/det(a);

А теперь рассмотрим пример решения матричного уравнения в символьном виде:

> A:=matrix(2,2,[a,b,с,d]);

> В:=vector(2, [с,d]);

В := [с, d]

> X:=linsolve(А,В);

Следующий пример показывает решение более сложной системы линейных уравнений с комплексными коэффициентами:

> А:=matrix(2,2,[[10+200*1,-200*1],[-200*1,170*1]]);

> B:=vector(2, [5,0]);

В := [5, 0]

> X:=multiply(inverse(А),В);

> Digits:=5: convert(eval(X),float);

[.037156 + .13114I, .043713 +.15428I]

На этот раз решение получено использованием функций умножения матриц и вычисления обратной матрицы в виде X=А-1∙В, то есть в матричном виде. В конце примера показано преобразование результатов с целью их получения в обычной форме комплексных чисел с частями, представленными в форме чисел с плавающей точкой.

6.2.6. Визуализация матриц

Как видно из описанного, многие вычисления имеют результаты, представляемые в форме матриц. Иногда такие результаты можно наглядно представить графически, например, в виде гистограммы. Она представляет собой множество столбцов квадратного сечения, расположенных на плоскости, образованной осями строк (row) и столбцов (column) матрицы. При этом высота столбцов определяется содержимым ячеек матрицы.

Такое построение обеспечивает графическая функция matnxplot из пакета plots. На рис. 5.1 показано совместное применение этой функции с двумя функциями пакета linafg, формирующими две специальные матрицы А и В.

Рис. 6.1. Графическое представление матрицы

1 ... 71 72 73 74 75 76 77 78 79 ... 125
Перейти на страницу:
На этой странице вы можете бесплатно читать книгу Maple 9.5/10 в математике, физике и образовании - Владимир Дьяконов.
Комментарии