Категории
Самые читаемые
onlinekniga.com » Справочная литература » Энциклопедии » Большая Советская Энциклопедия (ЭЛ) - БСЭ БСЭ

Большая Советская Энциклопедия (ЭЛ) - БСЭ БСЭ

Читать онлайн Большая Советская Энциклопедия (ЭЛ) - БСЭ БСЭ

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 71 72 73 74 75 76 77 78 79 ... 140
Перейти на страницу:

  Электронографические исследования проводятся в специальных приборах — электронографах и электронных микроскопах ; в условиях вакуума в них электроны ускоряются электрическим полем, фокусируются в узкий светосильный пучок, а образующиеся после прохождения через образец пучки либо фотографируются (электронограммы), либо регистрируются фотоэлектрическим устройством. В зависимости от величины электрического напряжения, ускоряющего электроны, различают дифракцию быстрых электронов (напряжение от 30—50 кэв до 1000 кэв и более) и дифракцию медленных электронов (напряжение от нескольких в до сотен в ).

  Э. принадлежит к дифракционным структурным методам (наряду с рентгеновским структурным анализом и нейтронографией ) и обладает рядом особенностей. Благодаря несравнимо более сильному взаимодействию электронов с веществом, а также возможности создания светосильного пучка в электронографе, экспозиция для получения электронограмм обычно составляет около секунды, что позволяет исследовать структурные превращения, кристаллизацию и т. д. С другой стороны, сильное взаимодействие электронов с веществом ограничивает допустимую толщину просвечиваемых образцов десятыми долями мкм (при напряжении 1000—2000 кэв максимальная толщина несколько мкм ).

  Э. позволила изучать атомные структуры огромного числа веществ, существующих лишь в мелкокристаллическом состоянии. Она обладает также преимуществом перед рентгеновским структурным анализом в определении положения лёгких атомов в присутствии тяжёлых (методам нейтронографии доступны такие исследования, но лишь для кристаллов значительно больших размеров, чем для исследуемых в Э.).

  Вид получаемых электронограмм зависит от характера исследуемых объектов. Электронограммы от плёнок, состоящих из кристалликов с достаточно точной взаимной ориентацией или тонких монокристаллических пластинок, образованы точками или пятнами (рефлексами) с правильным взаимным расположением. При частичной ориентации кристалликов в плёнках по определённому закону (текстуры ) получаются отражения в виде дуг (рис. 1 ). Электронограммы от образцов, состоящих из беспорядочно расположенных кристалликов, образованы аналогично дебаеграммам равномерно зачернёнными окружностями, а при съёмке на движущуюся фотопластинку (кинематическая съёмка) — параллельными линиями. Перечисленные типы электронограмм получаются в результате упругого, преимущественно однократного, рассеяния (без обмена энергией с кристаллом). При многократном неупругом рассеянии возникают вторичные дифракционные картины от дифрагированных пучков (рис. 2 ). Подобные электронограммы называются кикучи-электронограммами (по имени получившего их впервые японского физика). Электронограммы от молекул газа содержат небольшое число диффузных ореолов.

  В основе определения элементарной ячейки кристаллической структуры и её симметрии лежит измерение расположения рефлексов на электронограммах. Межплоскостное расстояние d в кристалле определяется из соотношения:

  d = L l/r,

  где L — расстояние от рассеивающего образца до фотопластинки, l — дебройлевская длина волны электрона, определяемая его энергией, r — расстояние от рефлекса до центрального пятна, создаваемого нерассеянными электронами. Методы расчёта атомной структуры кристаллов в Э. аналогичны применяемым в рентгеновском структурном анализе (изменяются лишь некоторые коэффициенты). Измерение интенсивностей рефлексов позволяет определить структурные амплитуды |Fhkl |. Распределение электростатического потенциала j(x, у, z ) кристалла представляется в виде ряда Фурье:

(h, k, l — миллеровские индексы , W — объём элементарной ячейки). Максимальные значения j(x, у, z ) соответствуют положениям атомов внутри элементарной ячейки кристалла (рис. 3 ). Таким образом, расчёт значений j(x, у, z ), который обычно осуществляется ЭВМ, позволяет установить координаты х, у, z атомов, расстояния между ними и т. п.

  Методами Э. были определены многие неизвестные атомные структуры, уточнены и дополнены рентгеноструктурные данные для большого числа веществ, в том числе множество цепных и циклических углеводородов, в которых впервые были локализованы атомы водорода, молекулы нитрилов переходных металлов (Fe, Cr, Ni, W), обширный класс окислов ниобия, ванадия и тантала с локализацией атомов N и О соответственно, а также 2- и 3-компонентных полупроводниковых соединений, глинистых минералов и слоистых структур. При помощи Э. можно также изучать строение дефектных структур. В комплексе с электронной микроскопией Э. позволяет изучать степень совершенства структуры тонких кристаллических плёнок, используемых в различных областях современной техники. Для процессов эпитаксии существенным является контроль степени совершенства поверхности подложки до нанесения плёнок, который выполняется с помощью кикучи-электронограмм: даже незначительные нарушения её структуры приводят к размытию кикучи-линий.

  На электронограммах, получаемых от газов, нет чётких рефлексов (т. к. объект не обладает строго периодической структурой) и их интерпретация осуществляется др. методами.

  Интенсивность каждой точки этих электронограмм определяется как молекулой в целом, так и входящими в неё атомами. Для структурных исследований важна молекулярная составляющая, атомную же составляющую рассматривают как фон и измеряют отношение молекулярной интенсивности к общей интенсивности в каждой точке электронограммы. Эти данные позволяют определять структуры молекул с числом атомов до 10—20, а также характер их тепловых колебаний в широком интервале температур. Таким путём изучено строение многих органических молекул, структуры молекул галогенидов, окислов и других соединений. Аналогичным методом проводят анализ атомной структуры ближнего порядка (см. Дальний порядок и ближний порядок ) в аморфных телах, стеклах и жидкостях.

  При использовании медленных электронов их дифракция сопровождается эффектом Оже и другими явлениями, возникающими вследствие сильного взаимодействия медленных электронов с атомами. Недостаточное развитие теории и сложность эксперимента затрудняют однозначную интерпретацию дифракционных картин. Применение этого метода целесообразно в сочетании с масс- и Оже-спектроскопией для исследования атомной структуры адсорбированных слоев, например газов, и поверхностей кристаллов на глубину нескольких атомных слоев (на 10—30 ). Эти исследования позволяют изучать явления адсорбции, самые начальные стадии кристаллизации и т. д.

  Лит.: Пинскер З. Г., Дифракция электронов, М. — Л., 1949; Вайнштейн Б. К., Структурная электронография, М., 1956; Звягин Б. Б., Электронография и структурная кристаллография глинистых минералов, М., 1964.

  З. Г. Пинскер.

Рис. 2. Кикучи-электронограмма, полученная методом «на отражение» (симметрично расположены тёмные и светлые кикучи-линии).

Рис. 1. Электронограмма, полученная от текстуры.

Рис. 3. Электрический потенциал молекулы дикетопиперазина в кристаллической структуре, полученный путём трёхмерного Фурье-синтеза; а и б - оси симметрии молекулы, непрерывной линией показаны эквипотенциальные поверхности, сгущение линий соответствует положениям атомов.

Электронография молекул

Электроногра'фия моле'кул, изучение атомной структуры молекул методом электронографии . Э. м. в газах и парах, а также электронография молекулярных кристаллов, аморфных тел и жидкостей позволила получить новые и уточнить имеющиеся данные о строении молекул многих химических соединений.

Электронож

Электроно'ж (мед.), аппарат для операционных разрезов мягких тканей током высокой частоты или для коагуляции их с целью остановки кровотечения. Состоит из генератора токов высокой частоты и комплекта электродов (в виде прямых и изогнутых ножей, петель, пластин и др.). См. также Диатермокоагуляция , Электрохирургия .

Электрооборудование зданий

Электрообору'дование зда'ний , совокупность электротехнических устройств, устанавливаемых в зданиях и предназначаемых для электроснабжения систем водоснабжения, вентиляции, кондиционирования воздуха, искусственного освещения и др., а также для подвода электроэнергии к бытовым электроприборам. К Э. з. относятся устройства внутреннего электроснабжения, электроустановки инженерного оборудования , осветительные установки. Внутреннее электроснабжение осуществляется вводно-распределительными устройствами (ВРУ) по внутренним электрическим сетям, имеет аппаратуру и приборы защиты, управления, коммутации и учёта расхода электроэнергии. ВРУ размещают в месте ввода в здание питающих линий преимущественно напряжением 380/220 в. На вводной части ВРУ обычно устанавливают трёхполюсные рубильники (или переключатели) и аппаратуру защиты. В состав распределительной части ВРУ входят устройства защиты отходящих от него питающих линий и приборы учёта расхода электроэнергии. Вертикальные части (стояки) питающих линий служат для разводки электроэнергии по этажам и квартирам через групповые линии питания электроприёмников. В жилых зданиях обычно имеются 3 групповые линии: общего освещения, штепсельных розеток на ток 6 а (для подключения бытовых электроприборов мощностью до 1,3 квт ) и штепсельных розеток с заземляющим контактом на ток 10 и 25 а (для питания приборов мощностью до 4 квт ). Электроплиты подключают к 3-й групповой линии через дополнительное штепсельное соединение. Для питания электроустановок инженерного оборудования и осветительных установок прокладывают отдельные стояки, имеющие в начале линии автоматические выключатели или плавкие предохранители.

1 ... 71 72 73 74 75 76 77 78 79 ... 140
Перейти на страницу:
На этой странице вы можете бесплатно читать книгу Большая Советская Энциклопедия (ЭЛ) - БСЭ БСЭ.
Комментарии