Категории
Самые читаемые
onlinekniga.com » Научные и научно-популярные книги » Культурология » Другая история науки. От Аристотеля до Ньютона - Сергей Валянский

Другая история науки. От Аристотеля до Ньютона - Сергей Валянский

Читать онлайн Другая история науки. От Аристотеля до Ньютона - Сергей Валянский

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 73 74 75 76 77 78 79 80 81 ... 163
Перейти на страницу:

Сложились также определенные приемы производства математических операций с целыми числами и дробями. При умножении, например, преимущественно используется способ постепенного удвоения одного из сомножителей и складывания подходящих частных произведений (отмечены звездочкой) (12х12)

1 12

2 24

*4 48

*8 96

вместе 144

При делении также используется процедура удвоения и последовательного деления пополам. Деление, по-видимому, было самой трудной математической операцией для египтян; в нем наблюдается самое большое разнообразие приемов.

Приведем пример одной из задач.

«Сало. Годовой сбор 10 беша. Какой ежедневный сбор? Обрати 10 беша в ро. Это будет 3200. Обрати год в дни. Это будет 365. Раздели 3200 на 365. Это 8 2/3 1/10 1/2190. Обрати».

Производится постепенный подбор частного. 8 дает разницу между истинным и частичным делимым: 3200–2920 = 280. Сомножитель 2/3 дает: 365х 2/3 = 243 1/3. Еще до 280 не хватает 36 2/3. Очередной подбор 1/10 дает уже разницу в 1/6 (так как 36 2/3 — 36 1/2 = 1/6). Остается только подобрать число, которое, будучи умножено на 365, дало бы 1/6. Это 1/2190. Таким образом, частное отыскивается постепенным подбором, для которого еще нет единого метода.

Часто встречается операция, называемая «хау» («куча»), соответствующая решению линейного уравнения вида

ах + bх +… сх = d.

Материалы, содержащиеся в папирусах, позволяют утверждать, что в Египте начали складываться элементы математики как науки. Техника вычислений еще примитивна, методы решения задач не единообразны.

Византийская математика

Основным достижением математической мысли, характеризующим начало византийской математики, было возникновение и развитие понятия о доказательстве. Первым из философов, применившим в математике метод доказательства, считается греческий ученый Фалес из Милета. Фалес доказал, например, равенство вертикальных углов, равенство углов при основании равнобедренного треугольника, один из признаков равенства треугольников и т. д.

Новым было то, что Фалес впервые попытался логически свои выводы обосновать. Тем самым он положил начало дедуктивной математики — той, которая впоследствии была превращена в стройную и строгую систему знаний.

Затем метод доказательства был усовершенствован и развит учеными пифагорейской школы, которые доказали, в частности, утверждение, называемое теперь теоремой Пифагора. Пифагорейцы предприняли первую попытку свести геометрию и алгебру того времени к арифметике. Они считали, что «все есть число», понимая под словом «число» лишь натуральные числа.

Однако натуральных чисел и дробей оказалось недостаточно для того, чтобы выразить длину диагонали квадрата со стороной 1. Анализ полученного доказательства привел к исследованию начальных вопросов теории чисел (четности и нечетности натуральных чисел, разложения чисел на простые множители, свойств взаимно простых чисел и т. д.). Византийские математики эллинского периода предприняли попытку обосновать всю математику на основе геометрических понятий. Они истолковывали, например, сложение величин, как сложение отрезков, а умножение — как построение прямоугольника с заданными сторонами.

Недостатком геометрического подхода к математике было то, что он препятствовал развитию алгебры. Византийцы умели в геометрической форме решать квадратные уравнения, но невозможно было представить геометрически четвертую и высшие степени длины, а, кроме того, нельзя было складывать выражения разных степеней: эта сумма геометрического смысла не имела. По той же причине в византийской математике не было отрицательных чисел и нуля, иррациональных чисел и буквенного исчисления.

Пифагор первый заметил, что сила и единство науки основаны на работе с идеальными объектами. Например, прямая линия — это не тетива натянутого лука и не луч света: ведь они имеют небольшую толщину, а линия толщины не имеет. То же относится к геометрической плоскости и поверхности воды в спокойном озере, или к числу 5 и пяти пальцам на руке. Идеальные объекты (будь то числа или фигуры) встречаются только в математическом рассуждении.

Все природные тела и процессы суть искаженные подобия идеальных тел и движений, а закономерности идеальных объектов выражаются с помощью чисел. Короче говоря: числа правят миром через свойства геометрических фигур! Но если так, то любые свойства чисел приобретают особое (даже мистическое) значение. Есть числа четные, а есть нечетные; есть простые, и есть составные. И еще есть дроби, то есть отношения натуральных чисел; их Пифагор из осторожности называл не числами, а «величинами».

Так в школе Пифагора из арифметики была выделена в отдельную область теория чисел, то есть совокупность математических знаний, относящихся к общим свойствам операций с натуральными числами. В это время уже стали известными способы суммирования простейших арифметических прогрессий. Были рассмотрены вопросы делимости чисел, введены арифметическая, геометрическая и гармоническая пропорции.

Наряду с геометрическим доказательством теоремы Пифагора был найден способ отыскания неограниченного ряда троек «пифагоровых» чисел, то есть троек чисел, удовлетворяющих соотношению a^2 + b^2 = c^2 и имеющих вид: п, (n^2 — 1)/2, (n^2 + 1)/2, где п — нечетное. Было открыто много математических закономерностей теории музыки.

Едва ли не первой открытой иррациональностью явился 2^1/2. Можно предполагать, что исходным пунктом этого открытия были попытки найти общую меру с помощью алгоритма последовательного вычитания, известного под именем алгоритма Евклида. Возможно, что некоторую побудительную роль сыграла задача математической теории музыки: деление октавы, приводящей к решению пропорции 1: п = п: 2. Не последнюю роль, по-видимому, играл и характерный для пифагорейской школы общий интерес к проблемам теории чисел.

Вслед за иррациональностью 2^1/2 были открыты многие другие иррациональности. Так, Архит доказал иррациональность чисел вида [n(n+1)]^1/2. Теодор из Кирены установил иррациональность квадратного корня из чисел 3, 5, 6…, 17.

Появление иррациональностей означало для неокрепшей греческой математики одновременное появление серьезных трудностей как в теоретико-числовом, так и в геометрическом плане. Была фактически поставлена под удар вся теория метрической геометрии и теория подобия. Но коль скоро открытие иррациональности показало, что совокупность геометрических величин (например, отрезков) более полна, чем множество рациональных чисел, то представилось целесообразным это более общее исчисление строить в геометрической форме. Это исчисление было создано; в литературе оно получило название геометрической алгебры.

Первичными элементами геометрической алгебры являлись отрезки прямой: работой с ними были определены все операции исчисления. Сложение интерпретировалось приставлением отрезков, вычитание — отбрасыванием от отрезка части, равной вычитаемому отрезку. Умножение отрезков приводило к построению двумерного образа; произведением отрезков а и b считался прямоугольник со сторонами а и b. Произведение трех отрезков давало параллелепипед, а произведение большего числа сомножителей в геометрической алгебре не могло быть рассматриваемо. Деление оказывалось возможным лишь при условии, что размерность делимого больше размерности делителя. Оно интерпретировалось эквивалентной задачей приложения площадей. Метод приложения площадей был распространен и на случаи решения задач, сводящихся к квадратным уравнениям.

Однако довольно быстро выявилась ограниченность области применения методов геометрической алгебры. Средствами построения являлись только циркуль и линейка, и хотя можно представить себе операции с трехмерными образами, но даже такая простая, казалось бы, задача, как построение куба с объемом вдвое больше данного, не поддавалась решению с помощью циркуля и линейки. Задачи же, приводящиеся к уравнениям степени выше третьей, оказывались в геометрической алгебре просто невозможными.

Среди других задач, не имевших решения этими методами, наиболее известны проблемы трисекции угла и квадратуры круга.

История задачи об удвоении куба — пример того, как происходит обогащение математических методов. Из-за этой задачи конические сечения вошли в математику, став средством решения задач, не поддающихся циркулю и линейке. Впрочем, для решения задачи удвоения куба применялись и другие способы. Эратосфен, например, построил прибор (мезолабий), удобный для приближенного удвоения куба. Однако ни один из методов не имел столь большого влияния на развитие античной математики, как конические сечения.

1 ... 73 74 75 76 77 78 79 80 81 ... 163
Перейти на страницу:
На этой странице вы можете бесплатно читать книгу Другая история науки. От Аристотеля до Ньютона - Сергей Валянский.
Комментарии