Категории
Самые читаемые
onlinekniga.com » Научные и научно-популярные книги » Науки о космосе » Черные дыры и складки времени. Дерзкое наследие Эйнштейна - Кип Торн

Черные дыры и складки времени. Дерзкое наследие Эйнштейна - Кип Торн

Читать онлайн Черные дыры и складки времени. Дерзкое наследие Эйнштейна - Кип Торн

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 74 75 76 77 78 79 80 81 82 ... 154
Перейти на страницу:

9.1. (а) Карл Янски рядом с антенной, с помощью которой он в 1932 г. открыл радиоизлучение нашей галактики, (б) Грот Ребер, около 1940 г. (в) Первый в мире радиотелескоп, построенный Гротом Ребером на заднем дворе дома своей матери в Уиттоне, штат Иллинойс, (г) Карта радиоизлучения неба, построенная Ребером с помощью своего дворового радиотелескопа, [(а) Фото Лаборатории Белл Телефон, предоставлено архивом видеоматериалов Эмилио Сэгре AIP; (б) и (в) предоставлено Гротом Ребером; (г) адаптация работы Грота Ребера (1944)]

История этих исследований и будет центральной линией этой главы. Я решил посвятить этому рассказу целую главу по нескольким причинам.

Во-первых, она иллюстрирует способ, каким обычно делаются астрономические открытия, отличный от показанного в предыдущих главах (глава 8). В главе 8 Зельдович и Новиков предложили конкретный метод поиска черных дыр; физики-экспериментаторы, астрономы и астрофизики воспользовались им и были вознаграждены. В этой главе гигантские черные дыры, наблюдаются Ребером еще в 1939 г., задолго до того, как кто-либо подумал заняться их поиском, но понадобится еще сорок лет, чтобы собрать данные наблюдений, вынудившие астрономов признать, что черные дыры — это действительно то, что они наблюдают.

Во-вторых, глава 8 рассказывала о силе астрофизиков и релятивистов, эта глава показывает пределы их возможностей. Существование типов черных дыр, открытых в главе 8, было предсказано за четверть века до того, как кто бы то ни было начал их искать. Это были черные дыры Оппенгеймера — Снайдера, в несколько раз массивнее Солнца, образующиеся при схлопывании больших звезд. И наоборот, теоретиками никогда не предсказывалось существование гигантских черных дыр. В тысячи или даже миллионы раз более массивных, чем любая из когда-либо наблюдавшихся астрономами на небе звезд, они, видимо, не могут образовываться посредством их схлопывания. Любой теоретик, предсказывая такие гигантские черные дыры, рисковал бы своей научной репутацией. Открытие таких черных дыр было сделано по чистому наитию.

В-третьих, рассказ об открытии в этой главе проиллюстрирует, даже более ясно, чем предыдущая глава, сложные взаимосвязи и взаимодействия между четырьмя научными группами: релятивистами, астрофизиками, астрономами и физиками экспериментаторами.

В-четвертых, как выяснится позднее в этой главе, вращение вокруг своей оси гигантских черных дыр и энергия этого вращения играют главную роль в объяснении наблюдаемого радиоизлучения. И наоборот, вращение черных дыр не имело никакого значения для наблюдаемых свойств скромных черных дыр главы 8.

* * *

В 1940 г., построив первую карту радиоизлучения неба, Ребер сделал тщательное техническое описание своего телескопа, измерений и самой карты и послал его по почте Субраманьяну Чандрасекару, который в то время являлся редактором журнала Astrophysical Journal, издаваемого Йеркесской обсерваторией Чикагского университета, расположенной на берегу озера Женева в штате Висконсин. Чандрасекар распространил замечательную рукопись Ребера среди астрономов Йеркеса. Озадаченные статьей абсолютно неизвестного любителя, некоторые из скептически настроенных астрономов направились в городок Уиттон в Иллинойсе, чтобы взглянуть на инструмент собственными глазами. Назад они вернулись потрясенными. Чандрасекар одобрил публикацию рукописи.

Джесси Гринштейн, ставший астрономом в Йеркесе по окончании Гарварда, в последовавшие несколько лет еще не раз ездил в Уиттон и стал близким другом Ребера. Гринштейн описывает Ребера как «идеал американского изобретателя. Если бы он не интересовался астрономией, он заработал бы миллион долларов».

Исполненный энтузиазма относительно работ Ребера, Гринштейн попробовал, спустя несколько лет взять его в Университет Чикаго. «Университет ни цента не хотел тратить на радиоастрономию», — вспоминает он. Директор Университетской Йеркесской обсерватории Отто Струве согласился взять Ребера на место исследователя, но при условии, что деньги в оплату его работы и в поддержку исследований будут идти из Вашингтона. Однако Ребер «был независимым малым», — говорит Гринштейн. Он отказывался подробно объяснять бюрократам, как будут потрачены деньги на новые телескопы. Дело провалилось.

Тем временем закончилась вторая мировая война, и ученые, занимавшиеся военно-технической деятельностью, начали искать для себя новые поприща. Среди них были и физики-экспериментаторы, разрабатывавшие во время войны радары для слежения за вражескими самолетами. Поскольку работа радара основана на посылке радиоволн передатчиком, подобным радиотелескопу, отражении радиоволн от самолета и приеме вернувшихся волн, эти физики-экспериментаторы идеально подходили, чтобы дать жизнь новой области — радиоастрономии, и многим из них не терпелось взяться за дело, ведь это была интересная огромная техническая задача, и интеллектуальный выход выглядел многообещающим. Среди многих, приложивших руку к этой проблеме, три группы быстро заняли доминирующее положение: группа Бернарда Ловелла в Джодрелл Бэнк, Манчестерского университета в Англии; группа Мартина Райля из Кембриджского университета в Англии и объединенная группа Дж. Л. Поуси и Джона Болтона в Австралии. В Америке было мало усилий, заслуживающих упоминания; Грот Ребер продолжал свои радиоастрономические исследования практически в одиночестве.

Оптические астрономы (т. е. астрономы, изучающие небо с помощью света[91], единственный тип астрономов, существовавший в те дни) почти не обратили внимания на лихорадочную деятельность физиков-экспериментаторов. Они будут оставаться равнодушными, пока радиотелескопы не будут в состоянии измерять положение источника на небе с такой точностью, чтобы можно было судить, какой светящийся объект излучает радиоволны. Это потребовало 100-кратного увеличения разрешения по сравнению с достигнутой Ребером, т. е. 100-кратного улучшения точности, с которой измеряются положение, размер и форма радиоисточников. Подобное улучшение было непростой задачей. Оптический телескоп или даже невооруженный человеческий глаз может легко достичь хорошего разрешения, поскольку волны, с которыми он «работает» (световые), имеют очень малую длину волны, меньше чем 10-6 метра. И наоборот, ухо человека не может очень точно определить, откуда исходит звук, поскольку звуковые волны имеют большую длину волны, около метра. Точно так же и радиоволны метрового размера дают плохое разрешение до тех пор, пока вы не будете использовать телескоп размерами во много раз больший метра. Телескоп Ребера был не слишком велик, и поэтому имел скромное разрешение. Чтобы достичь 100-кратного улучшения разрешения, нужен был телескоп в 100 раз большего размера, примерно в 1 км, и/или использование более коротковолнового радиоизлучения с длиной волны несколько сантиметров вместо одного метра.

9.2. Принцип работы радиоинтерферометра. Слева: Чтобы получить хорошее угловое разрешение, нужен огромный, размером порядка 1 км, радиотелескоп. Однако при этом оказывается достаточным, чтобы лишь несколько пятен на тарелке были действительно покрыты металлом и отражали радиоволны. Справа: Вовсе не обязательно, чтобы радиоволны, отраженные от таких пятен, фокусировались на антенне и приемнике в центре огромной антенны. Каждое пятно может фокусировать свои радиоволны на своей антенне и приемнике, а результирующие радиосигналы ото всех приемников могут быть затем по проводам переданы на центральную приемную станцию, где они объединяются таким же образом, как и в случае приемника гигантского телескопа. В результате получается сеть маленьких радиотелескопов со связанными и объединенными выходами — радиоинтерферометр

100-кратного улучшения чувствительности физикам-экспериментаторам удалось добиться уже к 1949 г., но не методом грубой силы, а с помощью хитрости. Ключом к пониманию этой хитрости может быть аналогия с чем-то совершенно простым и хорошо знакомым. (Это лишь аналогия, фактически, здесь есть небольшой обман, но она дает представление об общей идее.) Мы, люди, можем видеть трехмерность окружающего нас мира, используя только два глаза. Левый глаз видит чуть больше за объектом с левой стороны, а правый немного больше справа. Если мы наклоним голову, мы сможем видеть немного больше за объектом сверху и снизу; а если бы мы могли разнести наши глаза на еще большее расстояние (как это делается с помощью двух кинокамер для съемки стереофильмов с утрированной трехмерностью), мы бы смогли видеть еще больше всего за объектом. Однако наше стереоскопическое видение сильно не улучшилось бы, имей мы огромное количество глаз, полностью покрывающих наши лица. С помощью дополнительных глаз мы бы видели все гораздо отчетливее (имели бы лучшую чувствительность), но немного бы выиграли в трехмерном разрешении.

1 ... 74 75 76 77 78 79 80 81 82 ... 154
Перейти на страницу:
На этой странице вы можете бесплатно читать книгу Черные дыры и складки времени. Дерзкое наследие Эйнштейна - Кип Торн.
Комментарии