Категории
Самые читаемые
onlinekniga.com » Научные и научно-популярные книги » Математика » Принцесса или тигр - Рэймонд Смаллиан

Принцесса или тигр - Рэймонд Смаллиан

Читать онлайн Принцесса или тигр - Рэймонд Смаллиан

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 4 5 6 7 8 9 10 11 12 ... 44
Перейти на страницу:

Если обитатель данной психиатрической лечебницы убежден в чем-либо, тогда его убеждение будет либо истинным, либо ложным в зависимости от того, является ли говорящий нормальным человеком или же он лишился рассудка. Но если же обитатель лечебницы верит, будто он убежден в чем-либо, то это убеждение должно быть истинным вне зависимости от того, безумен ли говорящий или он находится в здравом уме. (Если он безумен, то эти два убеждения как бы «нейтрализуют» друг друга, совсем как по известному всем правилу «минус на минус дает плюс».)

6. В этом случае говорящий вовсе не утверждает ни того, что является пациентом, ни того, что он считает, будто является пациентом. Он утверждает лишь, что верит, будто считает, что является пациентом. Поскольку говорящий верит в то, что он утверждает, тогда он считает, что верит, будто считает, что является пациентом. Первые два утверждения «нейтрализуют» друг друга (смотри последнюю фразу в решении предыдущей задачи), так что фактически говорящий считает, будто он является пациентом. Таким образом, данная задача сводится к задаче о лечебнице номер четыре, решение которой уже получено нами (говорящий должен быть либо находящимся в здравом уме пациентом, либо утратившим рассудок врачом).

7. Крейг предложил удалить из лечебницы обитателя А, руководствуясь следующими соображениями. Предположим что А — нормальный человек. Тогда его убеждение в том, что В лишился рассудка, справедливо. Далее, поскольку В оказывается безумным, то его убеждение, будто А является врачом, ошибочно, а потому А- пациент, находящийся в здравом рассудке, и его следует выписать из лечебницы. С другой стороны допустим, что А безумен. Тогда его убеждение, что В лишился рассудка, ошибочно, и, стало быть B — нормальный человек. При этом уверенность В в том, что А является врачом, справедлива, и потому в данном случае А является лишившимся рассудка врачом которого следует выдворить из лечебницы.

Относительно же самого В никаких определенных выводов сделать нельзя.

8. Согласно условию 5 существует некий обитатель лечебницы, назовем его Артуром, который доверяет любому из пациентов и отказывает в доверии всем врачам. В то же самое время, согласно условию 4, всегда найдется другой обитатель, назовем его Билл, доверяющий только тем обитателям, которые имеют по крайней мере одного наставника, которому доверяет Артур. Это означает, что для любого обитателя Х справедливо следующее утверждение: если Билл доверяет X, то Артур доверяет по крайней мере одному из наставников X, а если Билл не доверяет X, тогда Артур не доверяет ни одному из наставников X. Поскольку пользоваться доверием Артура означает то же самое, что и быть пациентом (согласно условию 5), то мы можем переформулировать последнее утверждение таким образом. Для любого обитателя лечебницы X справедливо следующее: если Билл доверяет X, то по крайней мере один из наставников X является пациентом; если же Билл не доверяет X, то тогда ни один из наставников X пациентом не является. Далее, поскольку это утверждение справедливо для любого обитателя X, то, значит, оно справедливо также и в случае, когда этим X является сам Билл. Итак, нам известны следующие факты:

1) если Билл доверяет самому себе, то у него есть по крайней мере один наставник, который является пациентом;

2) если Билл не доверяет самому себе, тогда ни один из наставников Билла не является пациентом.

Понятно, что при этом существуют две возможности: либо Билл доверяет самому себе, либо этого не происходит. Разберем теперь, что же получается в каждом из этих случаев.

Случай 1. Билл доверяет самому себе.

Тогда у Билла имеется по крайней мере один наставник, назовем его Питер, который должен быть пациентом. Поскольку Питер является наставником Билла, то Питер уверен, что Билл доверяет самому себе (согласно условию 3). Но Билл действительно доверяет самому себе, и потому убеждение Питера истинно, а значит, он нормальный человек. Стало быть, Питер — находящийся в здравом уме пациент, и ему никак не место в данной лечебнице.

Случай 2. Билл не доверяет самому себе.

В этой ситуации ни один из наставников Билла не является пациентом. Однако у Билла, как и у любого другого обитателя лечебницы, имеется по крайней мере один наставник, назовем его Ричардом; при этом ясно, что Ричард должен быть врачом. Кроме того, поскольку Ричард является наставником Билла, то, значит, Ричард полагает, что Билл доверяет самому себе. Однако его уверенность в этом оказывается ложной, и, следовательно, Ричард находится не в своем уме. Итак, Ричард является лишившимся рассудка врачом и никак не должен пребывать в штате этой лечебницы.

Подведем итоги: если Билл доверяет самому себе, то тогда по крайней мере один из пациентов данной лечебницы оказывается нормальным человеком. Если же Билл не доверяет самому себе, тогда по крайней мере один из врачей должен оказаться не в своем уме. Но так как нам не известно, доверяет ли Билл самому себе или нет, то мы не можем сказать точно, что же неладно в этой больнице — то ли туда помещен находящийся в здравом уме пациент, то ли там работает лишившийся рассудка врач.

9. Прежде всего покажем, что обитатели С и В обязательно должны быть одинаковы с точки зрения их психического состояния. Допустим сначала, что А и В являются нормальными людьми. Тогда по условию психическое состояние пары В и С (точно так же, как и пары А и D) должно быть одинаковым. Это означает, что все четверо будут находиться в здравом уме. Следовательно, в этом случае С и D будут оба нормальными людьми. Предположим теперь, что оба обитателя А и В безумны. Тогда психическое состояние пар В и С. а также А и D будет различным. Таким образом, С и D снова оказываются нормальными людьми и тем самым их психическое состояние опять будет одинаковым. Далее допустим, что А — нормальный человек, а В лишился рассудка.

Тогда, поскольку психика пары В и С одинакова, то С обязательно должен оказаться безумным, а так как психическое состояние пары А и D различно, то это означает, что D также будет безумным. Наконец. предположим, что А безумен, а В — нормальный человек. Поскольку пара В и С по условию различается по своему психическому состоянию, а пара А и D не различается, то отсюда следует, что и С, и D непременно должны быть безумными.

Резюмируя, можно сказать, что если у пары А и В состояние психики оказывается идентичным, то С и D будут нормальными людьми, если же психическое состояние А и В будет неодинаковым, то С и D обязательно должны оказаться не в своем уме.

Таким образом, мы установили, что С и D должны быть одновременно либо нормальными людьми, либо лишившимися рассудка. Предположим, к примеру, что оба они находятся в здравом уме. Тогда утверждение С, что он и D не являются оба врачами, будет истинным, откуда следует, что по крайней мере один из них является пациентом, и к тому же пациентом, находящимся в здравом уме. Если же С и D безумны, то заявление С оказывается ложным и, значит, оба они должны быть врачами, причем врачами, лишенными рассудка.

Итак, в обследованной Крейгом лечебнице содержится по крайней мере один находящийся в здравом уме пациент или работают двое лишившихся рассудка врачей.

10, 11, 12. Поначалу мы обратимся к задачам 11 и 12, поскольку самый легкий путь к решению задачи 10 состоит в том, чтобы сначала рассмотреть решение задачи 12.

Прежде чем приступить к их решению, позвольте мне сформулировать полезное правило. Пусть мы имеем два конкретных утверждения, например X и V, про которые нам известно, что они либо оба истинны, либо оба ложны. Тогда любой обитатель лечебницы, верящий в одно из этих утверждений, должен поверить также и другому. Основание: если оба утверждения истинны, то любой обитатель, который поверит одному из них, должен находиться в здравом уме, а значит, сразу должен поверить и другому утверждению, так как оно также является истинным. Если же оба утверждения ложны, тогда обитатель лечебницы, который примет за истину одно из них, непременно должен оказаться безумным, а значит, обязательно должен поверить и другому утверждению, поскольку оно тоже будет ложным.

Обратимся теперь к решению задачи 12. Рассмотрим два произвольных комитета — комитет 1 и комитет 2. Обозначим через U множество всех тех обитателей лечебницы, чьи злейшие враги объединены в комитет 1, а через V — множество всех тех обитателей, чьи лучшие друзья принадлежат комитету 2. Согласно утверждению 4, множества U и V представляют собой комитеты. Тогда в соответствии с утверждением 5 некий обитатель, назовем его Дэн, близкий друг которого, назовем его Эдвард, полагает, что Дэн входит в группу U, а злейший враг которого, назовем его Фрэд, считает, что Дэн состоит в V. Итак, Эдвард считает, что Дэн принадлежит комитету U, а Фрэд уверен, что Дэн входит в комитет V. Наконец, по определению множества U утверждение о том, что Дэн входит в U, равносильно утверждению о том, что его злейший враг Фрэд состоит в комитете 1. Другими словами, утверждения «Дэн входит в U» и «Фрэд состоит в комитете 1» либо оба истинны, либо оба ложны. Поскольку Эдвард принимает за истину одно из них, а именно, что Дэн входит в U, то он должен также принять на веру и другое, а именно что Фрэд состоит в комитете I (вспомним тут наше вспомогательное правило). Итак, Эдвард считает, что Фрэд состоит в комитете 1.

1 ... 4 5 6 7 8 9 10 11 12 ... 44
Перейти на страницу:
На этой странице вы можете бесплатно читать книгу Принцесса или тигр - Рэймонд Смаллиан.
Комментарии