Maple 9.5/10 в математике, физике и образовании - Владимир Дьяконов
Шрифт:
Интервал:
Закладка:
Рис. 6.12. График функции с помеченной точкой глобального максимума
Глава 7
Решение дифференциальных уравнений
Дифференциальные уравнения лежат в основе математического моделирования различных, в том числе физических, систем и устройств [1, 38, 46]. Решению таких уравнений посвящена эта глава. В ней рассмотрено как аналитическое, так и численное решение дифференциальных уравнений различного вида — линейных и нелинейных, классических и специальных, например, в частных производных и с учетом двухсторонних граничных условий. Описание сопровождается множеством наглядных примеров, реализованных в СКМ Maple 9.5/10.
7.1. Введение в решение дифференциальных уравнений
7.1.1. Дифференциальные уравнения первого порядка
Дифференциальные уравнения (ДУ) это уравнения, связывающие неизвестную функцию с какими либо ее производными и, возможно, с независимыми переменными. Если неизвестная функция зависит только от одной независимой переменной, то такое уравнение называется обыкновенным дифференциальным уравнением, а если от двух и более многих независимых переменных — дифференциальным уравнением в частных производных.
Простейшее дифференциальное уравнение первого порядка
(7.1)
в общем случае имеет множество решений в виде зависимостей y(х). Однако можно получить единственное решение, если задать начальные условия в виде начальных значений х0 и у0= у(х0). Это решение может быть аналитическим, конечно-разностным или численным.
7.1.2. Решение дифференциального уравнения радиоактивного распада
В качестве примера аналитического решения дифференциального уравнения первого порядка (файл der) запишем дифференциальное уравнение радиоактивного распада атомов (N — число атомов в момент времени t, g=1/c):
> restart: deq:=diff(N(t),t)=-g*N(t);
Используя функцию dsolve, которая более подробно будет описана чуть позже, получим его общее аналитическое решение:
> dsolve(deq, N(t));
N(t)=_C1e(-gtf)В решении присутствует произвольная постоянная _С1. Но ее можно заметить на постоянную N(0)=N0, означающую начальное число атомов в момент t=0:
> dsolve({deq,N(0)=No},N(t));
N(t)=Noe(-gt)Если конкретно N0=100 и g=4, то получим:
> No := 100; g:=3;
Nо:=100 g:=3Хотя dsolve выдает решение N(t) в символьном виде, оно пока недоступно для построения графика этого решения или просто вычисления в любой точке. Однако, используя функции assign или subs можно сделать это решение доступным. Например, используем такую конструкцию:
> s: =dsolve({ deq, N(0) =-No}, N (t)); assign(s);
s: = N(t) = 100 e(-3t)Теперь мы можем воспользоваться полученной зависимостью N(t) и построить график ее:
> plot(N(t),t=0..3,color=black);
Этот график, который читатель может просмотреть сам, описывает хорошо известным апериодическим экспоненциальный закон уменьшения числа атомов вещества в ходе его радиоактивного распада. Подобные зависимости, кстати, характерны для напряжения на конденсаторе С при его разряде через резистор R, для тока в LA-цепи и для многих простых физических явлений, описывающихся дифференциальным уравнением первого порядка.
7.1.3. Модели популяций Мальтуса и Ферхюльса-Пирла
Еще одним классическим примером применения дифференциального уравнения первого порядка является давно известная и довольно грубая модель популяции Мальтуса. Не вдаваясь в хорошо известное описание этой модели, отметим, что она описывает численность особей или их биомассу x(t) в любой момент времени (для момента времени х(0)=N) Эта зависимость характеризуется коэффициентами рождаемости α и смертности β. При этом вводится их разность k=α-β.
Представим задание дифференциального уравнения динамики популяций по модели Мальтуса и его решение в аналитическом виде:
> restart:deq := diff(х(t),t) - k*x(t)=0;
> dsol1 := dsolve({deq,x(0)=N});
dsol1 := x(t) = Ne(k1)Нетрудно заметить, что решение этого уравнения аналогично решению дифференциального уравнения радиоактивного распада и описывается также экспоненциальной функций. Однако, в зависимости от того, какой фактор (рождаемость или смертность) преобладает наблюдается либо экспоненциальный рост, либо экспоненциальный спад биомассы популяций.
Более правдоподобную модель популяций предложили Ферхюльст и Пирл. Эта модель учитывает (коэффициентом внутривидовую конкуренцию и позволяет учесть приближение популяций к некоторому состоянию равновесия. На рис. 7.1 представлено дифференциальное уравнение динамики популяций Ферхюльста-Пирла. Решения приведены в общем виде, а также для k=g= k/g=1 и разных x(0)=1, 0.5 и 2.
Рис. 7.1. Моделирование популяций по модели Ферхюльста и Пирла
Поведение системы зависит от соотношения k/g и x(0)=N. При их равенстве количество биомассы популяции не меняется. При N>k/g биомасса экспоненциально уменьшается, приближаясь к значению k/g, а при N<k/g она экспоненциально возрастает, также приближаясь к k/g.
7.1.4. Системы дифференциальных уравнений
Встроенные в математические системы функции обычно решают систему из обыкновенных дифференциальных уравнений (ОДУ), представленную в форме Коши:
Здесь левая система задает начальные условия, а вторая представляет систему ОДУ.
7.1.5. Сведение ДУ высокого порядка к системам ОДУ первого порядка
Часто встречаются ДУ высокого (n-го) порядка:
y(n)=f(x, у, у', y'', …, y(n-1)),где
y(x0)=y0, y'(x0) =y0,1, y''(x0)=y0,2, …, y(n-1)(x0)=y0,n-1Обозначив
y1(х)=у(х), у2(х)=y'(x) …, yn(x)=y(n-1)(x)и
y0,0= y(x0), y0,1=у'(х0), y0,n-1=y(n-1)(x0)Теперь решение этого уравнения можно свести к решению системы ОДУ:
В таком виде ДУ n-го порядка может решаться стандартными средствами решения систем ОДУ, входящими в большинство математических систем.
7.1.6. Решение задачи на полет камня
В качестве примера аналитического решения системы дифференциальных уравнений рассмотрим постановку типичной физической задачи моделирования «Бросок камня», позволяющую описать полет камня, брошенного под углом к горизонту.
Модель должна позволять:
Вычислять положение камня в любой момент времени.
Исходные данные:
Масса камня, начальные координаты, начальная скорость и угол броска мяча.
На основе содержательной модели разрабатывается концептуальная формулировка задачи моделирования. Применительно к нашей задаче движение камня может быть описано в соответствии с законами классической механики Ньютона.
Гипотезы, принятые для модели:
• камень будем считать материальной точкой массой m, положение которой совпадает с центром масс камня;
• движение происходит в поле силы тяжести с постоянным ускорением свободного падения g и описывается уравнениями классической механики Ньютона;
• движение камня происходит в одной плоскости, перпендикулярной поверхность Земли;
• сопротивлением воздуха на первых порах пренебрегаем.
В качестве параметров движения будем использовать координаты (х, у) и скорость v(vx, vy) центра масс камня.
Концептуальная постановка задачи на основе принятых гипотез заключается в определении закона движения материальной точки массой m под действием силы тяжести, если известны начальные координаты точки х0 и ее начальная скорость v0 и угол броска α0.
Таким образом, модель является простой — объект, как материальная точка, не имеет внутренней структуры. Учитывая типичные скорости и высоту броска камня, можно считать постоянным ускорение свободного падения. Переход от трехмерных координат к плоскости значительно упрощает решение задачи. Он вполне допустим, если камень не подкручивается при броске. Пренебрежение сопротивлением воздуха, как будет показано далее, приводит к значительной систематической ошибке результатов моделирования.
Теперь перейдем к составлению математической модели объекта — совокупности математических соотношений, описывающих его поведение и свойства. Из законов и определяющих выражений предметной дисциплины формируются уравнения модели.